Skip to content
Related Articles

Related Articles

Sort an Array of Points by their distance from a reference Point

View Discussion
Improve Article
Save Article
Like Article
  • Last Updated : 15 Jun, 2022

Given an array arr[] containing N points and a reference point P, the task is to sort these points according to their distance from the given point P.

Examples:

Input: arr[] = {{5, 0}, {4, 0}, {3, 0}, {2, 0}, {1, 0}}, P = (0, 0) 
Output: (1, 0) (2, 0) (3, 0) (4, 0) (5, 0) 
Explanation: 
Distance between (0, 0) and (1, 0) = 1 
Distance between (0, 0) and (2, 0) = 2 
Distance between (0, 0) and (3, 0) = 3 
Distance between (0, 0) and (4, 0) = 4 
Distance between (0, 0) and (5, 0) = 5 

Hence, the sorted array of points will be: {(1, 0) (2, 0) (3, 0) (4, 0) (5, 0)}
Input: arr[] = {{5, 0}, {0, 4}, {0, 3}, {2, 0}, {1, 0}}, P = (0, 0) 
Output: (1, 0) (2, 0) (0, 3) (0, 4) (5, 0) 
Explanation: 
Distance between (0, 0) and (1, 0) = 1 
Distance between (0, 0) and (2, 0) = 2 
Distance between (0, 0) and (0, 3) = 3 
Distance between (0, 0) and (0, 4) = 4 
Distance between (0, 0) and (5, 0) = 5 
Hence, the sorted array of points will be: {(1, 0) (2, 0) (0, 3) (0, 4) (5, 0)}

Approach: The idea is to store each element at its distance from the given point P in a pair and then sort all the elements of the vector according to the distance stored.

Distance = \sqrt{(p2-x1)^{2} + (p2-y1)^{2}}
  • Append the distance in an array
  • Sort the array of distance and print the points based on the sorted distance.
    • Time Complexity: As in the above approach, there is sorting of an array of length N, which takes O(N*logN) time in the worst case. Hence, the Time Complexity will be O(N*log N).
    • Auxiliary Space Complexity: As in the above approach, there is extra space used to store the distance and the points as pairs. Hence, the auxiliary space complexity will be O(N).

C++




// C++ program
 
#include <bits/stdc++.h>
using namespace std;
 
bool compare(pair<int, pair<int, int> > a,
             pair<int, pair<int, int> > b)
{
    if (a.first == b.first) {
        return 0;
    }
    else {
        return (a.first < b.first) ? -1 : 1;
    }
}
 
// Function to sort the array of
// points by its distance from P
void sortArr(vector<vector<int> > arr, int n, vector<int> p)
{
    // Vector to store the distance
    // with respective elements
 
    vector<pair<int, pair<int, int> > > vp;
    // Storing the distance with its
    // distance in the vector array
    for (int i = 0; i < n; i++) {
 
        int dist = pow((p[0] - arr[i][0]), 2)
                   + pow((p[1] - arr[i][1]), 2);
        vp.push_back(make_pair(
            dist, make_pair(arr[i][0], arr[i][1])));
    }
 
    // Sorting the array with
    // respect to its distance
    sort(vp.begin(), vp.end(), compare);
 
    // Output
    for (int i = 0; i < n; i++) {
        cout << "(" << vp[i].second.first << ", "
             << vp[i].second.second << ") " << endl;
    }
}
 
int main()
{
    vector<vector<int> > arr
        = { { 5, 5 }, { 6, 6 }, { 1, 0 },
            { 2, 0 }, { 3, 1 }, { 1, -2 } };
    int n = 6;
    vector<int> p = { 0, 0 };
   
    // Function to perform sorting
    sortArr(arr, n, p);
}
 
// The code is contributed by Gautam goel (gautamgoel962)

Javascript




<script>
// Javascript program
 
function sortFunction(a, b) {
    if (a[0] === b[0]) {
        return 0;
    }
    else {
        return (a[0] < b[0]) ? -1 : 1;
    }
}
 
// Function to sort the array of
// points by its distance from P
function sortArr(arr, n, p)
{
    // Vector to store the distance
    // with respective elements
     
    var vp = new Array(n);
    // Storing the distance with its
    // distance in the vector array
    for (var i = 0; i < n; i++) {
   
        var dist = Math.pow((p[0] - arr[i][0]), 2)
              + Math.pow((p[1] - arr[i][1]), 2);
        vp[i] = [dist, [arr[i][0], arr[i][1]]];
    }
     
    // Sorting the array with
    // respect to its distance
    vp.sort(sortFunction);
   
    // Output
    for (var i = 0; i < n; i++) {
        document.write("(" + vp[i][1][0] + ", " + vp[i][1][1] + ") ");
    }
}
 
var arr = [[ 5, 5 ], [ 6, 6 ], [ 1, 0], [ 2, 0 ], [ 3, 1 ], [ 1, -2 ]];
var n = 6;
var p = [ 0, 0 ];
// Function to perform sorting
sortArr(arr, n, p);
</script>

Output:

(1, 0) (2, 0) (1, -2) (3, 1) (5, 5) (6, 6) 


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!