Skip to content
Related Articles

Related Articles

Improve Article

Sort an Array based on the absolute difference of adjacent elements

  • Difficulty Level : Hard
  • Last Updated : 07 Jun, 2021

Given an array arr[] containing N integers, the task is to rearrange all the elements of array such that absolute difference between consecutive elements of the array are sorted in increasing order.
Examples 
 

Input: arr[] = { 5, -2, 4, 8, 6, 5 } 
Output: 5 5 6 4 8 -2 
Explanation: 
|5 – 5| = 0 
|5 – 6| = 1 
|6 – 4| = 2 
|4 – 8| = 4 
|8 – (-2)| = 10 
Hence, the differences between adjacent elements are sorted.
Input: arr[] = { 8, 1, 4, 2 } 
Output: 4 2 8 1 
Explanation: 
|2 – 4| = 2 
|8 – 2| = 6 
|1 – 8| = 7 
Hence, the differences between adjacent elements are sorted. 
 

 

Approach: The problem can be solved using Greedy Approach. We know that the maximum difference is between the minimum and maximum elements of the array. Using this fact, if we include one of the minimum element in the answer, then the next element included in the answer array will be the maximum element, then the third element included will be the second minimum, then the fourth element included will be the second maximum and so on will give the desired array. 
Below are the steps: 
 

  1. Sort the given array arr[] in increasing order.
  2. Choose the first maximum(say a) and minimum element(say b) from the sorted array and insert in the answer array(say ans[]) as {a, b}.
  3. Repeat the above steps by choosing the second, third, fourth… maximum and minimum element from the sorted array and insert it in the front of the answer array.
  4. After all the above operations the answer array has the desired result.

Below is the implementation of the above approach: 
 



CPP




// C++ implementation of the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function that arrange the array such that
// all absolute difference between adjacent
// element are sorted
void sortedAdjacentDifferences(int arr[], int n)
{
    // To store the resultant array
    int ans[n];
 
    // Sorting the given array
    // in ascending order
    sort(arr + 0, arr + n);
 
    // Variable to represent left and right
    // ends of the given array
    int l = 0, r = n - 1;
 
    // Traversing the answer array in reverse
    // order and arrange the array elements from
    // arr[] in reverse order
    for (int i = n - 1; i >= 0; i--) {
 
        // Inserting elements in zig-zag manner
        if (i % 2) {
            ans[i] = arr[l];
            l++;
        }
        else {
            ans[i] = arr[r];
            r--;
        }
    }
 
    // Displaying the resultant array
    for (int i = 0; i < n; i++) {
        cout << ans[i] << " ";
    }
}
 
// Driver Code
int main()
{
    int arr[] = { 5, -2, 4, 8, 6, 4, 5 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    // Function Call
    sortedAdjacentDifferences(arr, n);
    return 0;
}

Java




// Java implementation of the above approach
import java.util.*;
 
class GFG{
  
// Function that arrange the array such that
// all absolute difference between adjacent
// element are sorted
static void sortedAdjacentDifferences(int arr[], int n)
{
    // To store the resultant array
    int []ans = new int[n];
  
    // Sorting the given array
    // in ascending order
    Arrays.sort(arr);
  
    // Variable to represent left and right
    // ends of the given array
    int l = 0, r = n - 1;
  
    // Traversing the answer array in reverse
    // order and arrange the array elements from
    // arr[] in reverse order
    for (int i = n - 1; i >= 0; i--) {
  
        // Inserting elements in zig-zag manner
        if (i % 2 == 1) {
            ans[i] = arr[l];
            l++;
        }
        else {
            ans[i] = arr[r];
            r--;
        }
    }
  
    // Displaying the resultant array
    for (int i = 0; i < n; i++) {
        System.out.print(ans[i]+ " ");
    }
}
  
// Driver Code
public static void main(String[] args)
{
    int arr[] = { 5, -2, 4, 8, 6, 4, 5 };
    int n = arr.length;
  
    // Function Call
    sortedAdjacentDifferences(arr, n);
}
}
 
// This code is contributed by Princi Singh

Python3




# Python3 implementation of the above approach
 
# Function that arrange the array such that
# all absolute difference between adjacent
# element are sorted
def sortedAdjacentDifferences(arr, n):
     
    # To store the resultant array
    ans = [0]*n
 
    # Sorting the given array
    # in ascending order
    arr = sorted(arr)
 
    # Variable to represent left and right
    # ends of the given array
    l = 0
    r = n - 1
 
    # Traversing the answer array in reverse
    # order and arrange the array elements from
    # arr[] in reverse order
    for i in range(n - 1, -1, -1):
 
        # Inserting elements in zig-zag manner
        if (i % 2):
            ans[i] = arr[l]
            l += 1
        else:
            ans[i] = arr[r]
            r -= 1
 
    # Displaying the resultant array
    for i in range(n):
        print(ans[i], end=" ")
 
# Driver Code
if __name__ == '__main__':
    arr=[5, -2, 4, 8, 6, 4, 5]
    n = len(arr)
 
    # Function Call
    sortedAdjacentDifferences(arr, n)
     
# This code is contributed by mohit kumar 29

C#




// C# implementation of the above approach
using System;
 
class GFG
{
    // Function that arrange the array such that
    // all absolute difference between adjacent
    // element are sorted
    static void sortedAdjacentDifferences(int[] arr, int n)
    {
        // To store the resultant array
        int[] ans = new int[n];
      
        // Sorting the given array
        // in ascending order
        Array.Sort(arr);
      
        // Variable to represent left and right
        // ends of the given array
        int l = 0, r = n - 1;
      
        // Traversing the answer array in reverse
        // order and arrange the array elements from
        // arr[] in reverse order
        for (int i = n - 1; i >= 0; i--) {
      
            // Inserting elements in zig-zag manner
            if (i % 2 != 0) {
                ans[i] = arr[l];
                l++;
            }
            else {
                ans[i] = arr[r];
                r--;
            }
        }
      
        // Displaying the resultant array
        for (int i = 0; i < n; i++) {
            Console.Write(ans[i] + " ");
        }
    }
      
    // Driver Code
    public static void Main()
    {
        int[] arr = { 5, -2, 4, 8, 6, 4, 5 };
        int n = arr.Length;
      
        // Function Call
        sortedAdjacentDifferences(arr, n);
    }
}
 
// This code is contributed by chitranayal

Javascript




<script>
 
// JavaScript implementation of the above approach
 
// Function that arrange the array such that
// all absolute difference between adjacent
// element are sorted
function sortedAdjacentDifferences(arr, n)
{
    // To store the resultant array
    let ans = new Array(n);
 
    // Sorting the given array
    // in ascending order
    arr.sort();
 
    // Variable to represent left and right
    // ends of the given array
    let l = 0, r = n - 1;
 
    // Traversing the answer array in reverse
    // order and arrange the array elements from
    // arr[] in reverse order
    for (let i = n - 1; i >= 0; i--) {
 
        // Inserting elements in zig-zag manner
        if (i % 2) {
            ans[i] = arr[l];
            l++;
        }
        else {
            ans[i] = arr[r];
            r--;
        }
    }
 
    // Displaying the resultant array
    for (let i = 0; i < n; i++) {
        document.write(ans[i] + " ");
    }
}
 
// Driver Code
    let arr = [ 5, -2, 4, 8, 6, 4, 5 ];
    let n = arr.length;
 
    // Function Call
    sortedAdjacentDifferences(arr, n);
 
</script>
Output: 
5 4 5 4 6 -2 8

 

Time Complexity: O(N*log N), where N is the number of element in the given array.
 




My Personal Notes arrow_drop_up
Recommended Articles
Page :