Open In App

Solve Linear Congruences Ax = B (mod N) for values of x in range [0, N-1]

Last Updated : 12 Jul, 2021
Improve
Improve
Like Article
Like
Save
Share
Report

Given three positive integers A, B, and N, which represent a linear congruence of the form AX=B (mod N), the task is to print all possible values of X (mod N) i.e in the range [0, N-1] that satisfies this equation. If there is no solution, print -1.

Examples:

Input: A=15, B=9, N=18
Output: 15, 3, 9
Explanation: The values of X satisfying the condition AX=B (mod N) are {3, 9, 15}.
(15*15)%18 = 225%18=9
(3*15)%18 = 45%18=9
(9*15)%18 = 135%18=9

Input: A=9, B=21, N=30
Output: 9, 19, 20

Approach: The idea is based on the following observations:

  • A solution exists if and only if B is divisible by GCD(A, N) i.e B%GCD(A, N)=0.
  • The number of solutions for X (mod N) is GCD(A, N).

Proof:

  1. Given, AX=B (mod N)
    ? there exist a number Y such that AX=B+NY
    AX-NY=B — (1)
    This is a linear Diophantine equation, and is solvable if and only if GCD(A, N) divides B.
  2. Now, using the Extended Euclidean Algorithm, u and v can be found such that Au+Nv=GCD(A, N)=d(say)
    ? Au+Nv=d
    ? Au=d (mod N) — (2)
  3. Assuming B%d=0, so that solution of Equation 1 exists, 
    Multiplying both sides of Equation 2 by B/d, (possible since B/d is an integer), 
    Au*(B/d)=d*(B/d) (mod N) or A*(u*B/d)=B (mod N).
    Thus, u*B/d is a solution of Equation 1.
  4. Let X0 be u*B/d.
    Thus, the d solutions of Equation 1 will be X0, X0+(N/d), X0+2*(N/d), …, X0+(d-1)*(N/d)

Follow the steps below to solve the problem:

  • Initialize variable d as GCD(A, N) as well as u using the Extended Euclidean Algorithm.
  • If B is not divisible by d, print -1 as the result.
  • Else iterate in the range [0, d-1] using the variable i and in each iteration print the value of u*(B/d)+i*(N/d).

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to stores the values of x and y
// and find the value of gcd(a, b)
long long ExtendedEuclidAlgo(
    long long a, long long b,
    long long& x, long long& y)
{
    // Base Case
    if (b == 0) {
        x = 1;
        y = 0;
        return a;
    }
    else {
 
        // Store the result of recursive call
        long long x1, y1;
        long long gcd
            = ExtendedEuclidAlgo(b, a % b, x1, y1);
 
        // Update x and y using results of
        // recursive call
        x = y1;
        y = x1 - floor(a / b) * y1;
 
        return gcd;
    }
}
 
// Function to give the distinct
// solutions of ax = b (mod n)
void linearCongruence(long long A,
                      long long B,
                      long long N)
{
    A = A % N;
    B = B % N;
 
    long long u = 0, v = 0;
 
    // Function Call to find
    // the value of d and u
    long long d = ExtendedEuclidAlgo(A, N, u, v);
 
    // No solution exists
    if (B % d != 0) {
        cout << -1 << endl;
        return;
    }
 
    // Else, initialize the value of x0
    long long x0 = (u * (B / d)) % N;
    if (x0 < 0)
        x0 += N;
 
    // Print all the answers
    for (long long i = 0; i <= d - 1; i++)
        cout << (x0 + i * (N / d)) % N << " ";
}
 
// Driver Code
int main()
{
    // Input
    long long A = 15;
    long long B = 9;
    long long N = 18;
 
    // Function Call
    linearCongruence(A, B, N);
 
    return 0;
}


Java




// Java program for the above approach
import java.io.*;
 
class GFG{
     
// Function to stores the values of x and y
// and find the value of gcd(a, b)
public static long[] ExtendedEuclidAlgo(long a,
                                        long b)
{
     
    // Base Case
    if (a == 0)
    {
        return new long[]{b, 0, 1};
    }
    else
    {
         
        // Store the result of recursive call
        long x1 = 1, y1 = 1;
        long gcdy[] = ExtendedEuclidAlgo(b % a, a);
        long gcd = gcdy[0];
        x1 = gcdy[1];
        y1 = gcdy[2];
 
        // Update x and y using results of
        // recursive call
        long y = x1;
        long x = y1 - (long)Math.floor(b / a) * x1;
 
        return new long[] {gcd, x, y};
    }
}
 
// Function to give the distinct
// solutions of ax = b (mod n)
public static void linearCongruence(long A,
                                    long B,
                                    long N)
{
    A = A % N;
    B = B % N;
     
    long u = 0, v = 0;
 
    // Function Call to find
    // the value of d and u
    long person[] = ExtendedEuclidAlgo(A, N);
    long d = person[0];
    u = person[1];
    v = person[2];
 
    // No solution exists
    if (B % d != 0)
    {
        System.out.println(-1);
        return;
    }
 
    // Else, initialize the value of x0
    long x0 = (u * (B / d)) % N;
    if (x0 < 0)
        x0 += N;
     
    // Print all the answers
    for(long i = 0; i <= d - 1; i++)
    {
        long an = (x0 + i * (N / d)) % N;
        System.out.print(an + " ");
    }
}
 
// Driver Code
public static void main(String[] args)
{
     
    // Input
    long A = 15;
    long B = 9;
    long N = 18;
 
    // Function Call
    linearCongruence(A, B, N);
}
}
 
// This code is contributed by Shubhamsingh10


Python3




# Python3 program for the above approach
 
# Function to stores the values of x and y
# and find the value of gcd(a, b)
def ExtendedEuclidAlgo(a, b):
     
    # Base Case
    if a == 0 :
        return b, 0, 1
         
    gcd, x1, y1 = ExtendedEuclidAlgo(b % a, a)
     
    # Update x and y using results of recursive
    # call
    x = y1 - (b // a) * x1
    y = x1
     
    return gcd, x, y
     
# Function to give the distinct
# solutions of ax = b (mod n)
def linearCongruence(A, B, N):
     
    A = A % N
    B = B % N
    u = 0
    v = 0
     
    # Function Call to find
    # the value of d and u
    d, u, v = ExtendedEuclidAlgo(A, N)
     
    # No solution exists
    if (B % d != 0):
        print(-1)
        return
     
    # Else, initialize the value of x0
    x0 = (u * (B // d)) % N
    if (x0 < 0):
        x0 += N
     
    # Pr all the answers
    for i in range(d):
        print((x0 + i * (N // d)) % N, end = " ")
 
# Driver Code
 
# Input
A = 15
B = 9
N = 18
 
# Function Call
linearCongruence(A, B, N)
 
# This code is contributed by SHUBHAMSINGH10


C#




// C# program for the above approach
using System;
 
class GFG{
     
    // Function to stores the values of x and y
    // and find the value of gcd(a, b)
    public static long[] ExtendedEuclidAlgo(long a,
                                            long b)
    {
         
        // Base Case
        if (a == 0)
        {
            return new long[]{b, 0, 1};
        }
        else
        {
             
            // Store the result of recursive call
            long x1 = 1, y1 = 1;
            long[] gcdy = ExtendedEuclidAlgo(b % a, a);
            long gcd = gcdy[0];
            x1 = gcdy[1];
            y1 = gcdy[2];
     
            // Update x and y using results of
            // recursive call
            long y = x1;
            long x = y1 - (long)(b / a) * x1;
     
            return new long[] {gcd, x, y};
        }
    }
     
    // Function to give the distinct
    // solutions of ax = b (mod n)
    public static void linearCongruence(long A,
                                        long B,
                                        long N)
    {
        A = A % N;
        B = B % N;
         
        long u = 0, v = 0;
     
        // Function Call to find
        // the value of d and u
        long []person = ExtendedEuclidAlgo(A, N);
        long d = person[0];
        u = person[1];
        v = person[2];
     
        // No solution exists
        if (B % d != 0)
        {
            Console.WriteLine(-1);
            return;
        }
     
        // Else, initialize the value of x0
        long x0 = (u * (B / d)) % N;
        if (x0 < 0)
            x0 += N;
         
        // Print all the answers
        for(long i = 0; i <= d - 1; i++)
        {
            long an = (x0 + i * (N / d)) % N;
            Console.Write(an + " ");
        }
    }
 
// Driver Code
    static public void Main (){
         
        // Input
        long A = 15;
        long B = 9;
        long N = 18;
     
        // Function Call
        linearCongruence(A, B, N);
    }
}
 
// This code is contributed by Shubhamsingh10


Javascript




<script>
   
// JavaScript program for the above approach
 
// Function to stores the values of x and y
// and find the value of gcd(a, b)
function ExtendedEuclidAlgo(a, b)
{
     
    // Base Case
    if (a == 0)
    {
        return [b, 0, 1];
    }
    else
    {
         
        // Store the result of recursive call
        let x1 = 1, y1 = 1;
        let gcdy = ExtendedEuclidAlgo(b % a, a);
        let gcd = gcdy[0];
        x1 = gcdy[1];
        y1 = gcdy[2];
 
        // Update x and y using results of
        // recursive call
        let y = x1;
        let x = y1 - Math.floor(b / a) * x1;
 
        return [gcd, x, y];
    }
}
 
// Function to give the distinct
// solutions of ax = b (mod n)
function linearCongruence(A, B, N)
{
    A = A % N;
    B = B % N;
     
    let u = 0, v = 0;
 
    // Function Call to find
    // the value of d and u
    let person = ExtendedEuclidAlgo(A, N);
    let d = person[0];
    u = person[1];
    v = person[2];
 
    // No solution exists
    if (B % d != 0)
    {
        document.write(-1);
        return;
    }
 
    // Else, initialize the value of x0
    let x0 = (u * (B / d)) % N;
    if (x0 < 0)
        x0 += N;
     
    // Print all the answers
    for(let i = 0; i <= d - 1; i++)
    {
        let an = (x0 + i * (N / d)) % N;
        document.write(an + " ");
    }
}
 
// Driver Code
 
    // Input
    let A = 15;
    let B = 9;
    let N = 18;
 
    // Function Call
    linearCongruence(A, B, N);
     
    // This code is contributed by sanjoy_62.
</script>


Output

15 3 9 

Time Complexity: O(log(min(A, N))
Auxiliary Space: O(1)

 



Like Article
Suggest improvement
Previous
Next
Share your thoughts in the comments

Similar Reads