# Smallest value in each level of Binary Tree

Given a binary tree containing n nodes, the task is to print minimum element in each level of binary tree.

Examples:

```Input :
7
/    \
6       5
/ \     / \
4  3     2  1

Output :
Every level minimum is
level 0 min is = 7
level 1 min is = 5
level 2 min is = 1

Input :
7
/    \
16       1
/ \
4   13

Output :
Every level minimum is
level 0 min is = 7
level 1 min is = 1
level 2 min is = 4
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Method 1: Using In-order traversal
Approach:- The idea is to recursively traverse tree in a in-order fashion. Root is considered to be at zeroth level. First find the height of tree and store it into res. res array store every smallest element in each level of binary tree.

Below is the implementation to find smallest value on each level of Binary Tree.

## C++

 `// CPP program to print smallest element ` `// in each level of binary tree. ` `#include ` `#define INT_MAX 10e6 ` `using` `namespace` `std; ` ` `  `// A Binary Tree Node ` `struct` `Node { ` `    ``int` `data; ` `    ``struct` `Node *left, *right; ` `}; ` ` `  `// return height of tree ` `int` `heightoftree(Node* root) ` `{ ` ` `  `    ``if` `(root == NULL) ` `        ``return` `0; ` ` `  `    ``int` `left = heightoftree(root->left); ` `    ``int` `right = heightoftree(root->right); ` ` `  `    ``return` `((left > right ? left : right) + 1); ` `} ` ` `  `// Inorder Traversal ` `// Search minimum element in each level and  ` `// store it into vector array. ` `void` `printPerLevelMinimum(Node* root,  ` `                  ``vector<``int``>& res, ``int` `level) ` `{ ` `     `  `    ``if` `(root != NULL) { ` ` `  `        ``printPerLevelMinimum(root->left, ` `                              ``res, level + 1); ` ` `  `        ``if` `(root->data < res[level]) ` `            ``res[level] = root->data; ` ` `  `        ``printPerLevelMinimum(root->right,  ` `                              ``res, level + 1); ` `    ``} ` `} ` ` `  `void` `perLevelMinimumUtility(Node* root) ` `{ ` `     `  `    ``// height of tree for the size of  ` `    ``// vector array ` `    ``int` `n = heightoftree(root), i; ` ` `  `    ``// vector for store all minimum of  ` `    ``// every level ` `    ``vector<``int``> res(n, INT_MAX); ` ` `  `    ``// save every level minimum using  ` `    ``// inorder traversal ` `    ``printPerLevelMinimum(root, res, 0); ` ` `  `    ``// print every level minimum ` `    ``cout << ``"Every level minimum is\n"``; ` `    ``for` `(i = 0; i < n; i++) { ` `        ``cout << ``"level "` `<< i <<``" min is = "` `                            ``<< res[i] << ``"\n"``; ` `    ``} ` `} ` ` `  `// Utility function to create a new tree node ` `Node* newNode(``int` `data) ` `{ ` `    ``Node* temp = ``new` `Node; ` `    ``temp->data = data; ` `    ``temp->left = temp->right = NULL; ` ` `  `    ``return` `temp; ` `} ` ` `  `// Driver program to test above functions ` `int` `main() ` `{ ` ` `  `    ``// Let us create binary tree shown  ` `    ``// in above diagram ` `    ``Node* root = newNode(7); ` `    ``root->left = newNode(6); ` `    ``root->right = newNode(5); ` `    ``root->left->left = newNode(4); ` `    ``root->left->right = newNode(3); ` `    ``root->right->left = newNode(2); ` `    ``root->right->right = newNode(1); ` ` `  `    ``/*       7 ` `         ``/  \ ` `        ``6     5 ` `       ``/ \     / \ ` `      ``4   3 2   1         */` `    ``perLevelMinimumUtility(root); ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java program to print smallest element ` `// in each level of binary tree. ` `import` `java.util.Arrays; ` `class` `GFG ` `{ ` `static` `int` `INT_MAX = (``int``) 10e6; ` ` `  `// A Binary Tree Node ` `static` `class` `Node  ` `{ ` `    ``int` `data; ` `    ``Node left, right; ` `}; ` ` `  `// return height of tree ` `static` `int` `heightoftree(Node root) ` `{ ` `    ``if` `(root == ``null``) ` `        ``return` `0``; ` ` `  `    ``int` `left = heightoftree(root.left); ` `    ``int` `right = heightoftree(root.right); ` ` `  `    ``return` `((left > right ? left : right) + ``1``); ` `} ` ` `  `// Inorder Traversal ` `// Search minimum element in each level and  ` `// store it into vector array. ` `static` `void` `printPerLevelMinimum(Node root,  ` `                      ``int` `[]res, ``int` `level) ` `{ ` `    ``if` `(root != ``null``)  ` `    ``{ ` `        ``printPerLevelMinimum(root.left, ` `                             ``res, level + ``1``); ` ` `  `        ``if` `(root.data < res[level]) ` `            ``res[level] = root.data; ` ` `  `        ``printPerLevelMinimum(root.right,  ` `                             ``res, level + ``1``); ` `    ``} ` `} ` ` `  `static` `void` `perLevelMinimumUtility(Node root) ` `{ ` `     `  `    ``// height of tree for the size of  ` `    ``// vector array ` `    ``int` `n = heightoftree(root), i; ` ` `  `    ``// vector for store all minimum of  ` `    ``// every level ` `    ``int` `[]res = ``new` `int``[n]; ` `    ``Arrays.fill(res, INT_MAX); ` ` `  `    ``// save every level minimum using  ` `    ``// inorder traversal ` `    ``printPerLevelMinimum(root, res, ``0``); ` ` `  `    ``// print every level minimum ` `    ``System.out.print(``"Every level minimum is\n"``); ` `    ``for` `(i = ``0``; i < n; i++)  ` `    ``{ ` `        ``System.out.print(``"level "` `+ i +  ` `                         ``" min is = "` `+  ` `                        ``res[i] + ``"\n"``); ` `    ``} ` `} ` ` `  `// Utility function to create a new tree node ` `static` `Node newNode(``int` `data) ` `{ ` `    ``Node temp = ``new` `Node(); ` `    ``temp.data = data; ` `    ``temp.left = temp.right = ``null``; ` ` `  `    ``return` `temp; ` `} ` ` `  `// Driver Code ` `public` `static` `void` `main(String[] args) ` `{ ` ` `  `    ``// Let us create binary tree shown  ` `    ``// in above diagram ` `    ``Node root = newNode(``7``); ` `    ``root.left = newNode(``6``); ` `    ``root.right = newNode(``5``); ` `    ``root.left.left = newNode(``4``); ` `    ``root.left.right = newNode(``3``); ` `    ``root.right.left = newNode(``2``); ` `    ``root.right.right = newNode(``1``); ` ` `  `    ``/*     7 ` `        ``/ \ ` `        ``6     5 ` `    ``/ \     / \ ` `    ``4 3 2 1         */` `    ``perLevelMinimumUtility(root); ` `} ` `}  ` ` `  `// This code is contributed by PrinciRaj1992 `

## C#

 `// C# program to print smallest element ` `// in each level of binary tree. ` `using` `System; ` ` `  `class` `GFG ` `{ ` `static` `int` `INT_MAX = (``int``) 10e6; ` ` `  `// A Binary Tree Node ` `public` `class` `Node  ` `{ ` `    ``public` `int` `data; ` `    ``public` `Node left, right; ` `}; ` ` `  `// return height of tree ` `static` `int` `heightoftree(Node root) ` `{ ` `    ``if` `(root == ``null``) ` `        ``return` `0; ` ` `  `    ``int` `left = heightoftree(root.left); ` `    ``int` `right = heightoftree(root.right); ` ` `  `    ``return` `((left > right ? left : right) + 1); ` `} ` ` `  `// Inorder Traversal ` `// Search minimum element in each level and  ` `// store it into vector array. ` `static` `void` `printPerLevelMinimum(Node root,  ` `                                 ``int` `[]res,  ` `                                 ``int` `level) ` `{ ` `    ``if` `(root != ``null``)  ` `    ``{ ` `        ``printPerLevelMinimum(root.left, ` `                             ``res, level + 1); ` ` `  `        ``if` `(root.data < res[level]) ` `            ``res[level] = root.data; ` ` `  `        ``printPerLevelMinimum(root.right,  ` `                             ``res, level + 1); ` `    ``} ` `} ` ` `  `static` `void` `perLevelMinimumUtility(Node root) ` `{ ` `     `  `    ``// height of tree for the size of  ` `    ``// vector array ` `    ``int` `n = heightoftree(root), i; ` ` `  `    ``// vector for store all minimum of  ` `    ``// every level ` `    ``int` `[]res = ``new` `int``[n]; ` `    ``for` `(i = 0; i < n; i++) ` `        ``res[i] = INT_MAX; ` ` `  `    ``// save every level minimum using  ` `    ``// inorder traversal ` `    ``printPerLevelMinimum(root, res, 0); ` ` `  `    ``// print every level minimum ` `    ``Console.Write(``"Every level minimum is\n"``); ` `    ``for` `(i = 0; i < n; i++)  ` `    ``{ ` `        ``Console.Write(``"level "` `+ i +  ` `                      ``" min is = "` `+  ` `                     ``res[i] + ``"\n"``); ` `    ``} ` `} ` ` `  `// Utility function to create a new tree node ` `static` `Node newNode(``int` `data) ` `{ ` `    ``Node temp = ``new` `Node(); ` `    ``temp.data = data; ` `    ``temp.left = temp.right = ``null``; ` ` `  `    ``return` `temp; ` `} ` ` `  `// Driver Code ` `public` `static` `void` `Main(String[] args) ` `{ ` ` `  `    ``// Let us create binary tree shown  ` `    ``// in above diagram ` `    ``Node root = newNode(7); ` `    ``root.left = newNode(6); ` `    ``root.right = newNode(5); ` `    ``root.left.left = newNode(4); ` `    ``root.left.right = newNode(3); ` `    ``root.right.left = newNode(2); ` `    ``root.right.right = newNode(1); ` ` `  `    ``/*     7 ` `        ``/ \ ` `        ``6     5 ` `    ``/ \     / \ ` `    ``4 3 2 1         */` `    ``perLevelMinimumUtility(root); ` `} ` `}  ` ` `  `// This code is contributed by Princi Singh `

Output:

```Every level minimum is
level 0 min is = 7
level 1 min is = 5
level 2 min is = 1
```

Method 2: Using level order Traversal
Approach:- The idea is to perform iterative level order traversal of the binary tree using queue. While traversing keep min variable which stores the minimum element of the current level of the tree being processed. When the level is completely traversed, print that min value.

## C++

 `// CPP program to print minimum element ` `// in each level of binary tree. ` `#include ` `#include ` `#include ` `#define INT_MAX 10e6 ` `using` `namespace` `std; ` ` `  `// A Binary Tree Node ` `struct` `Node { ` `    ``int` `data; ` `    ``struct` `Node *left, *right; ` `}; ` ` `  `// return height of tree ` `int` `heightoftree(Node* root) ` `{ ` ` `  `    ``if` `(root == NULL) ` `        ``return` `0; ` ` `  `    ``int` `left = heightoftree(root->left); ` `    ``int` `right = heightoftree(root->right); ` ` `  `    ``return` `((left > right ? left : right) + 1); ` `} ` ` `  `// Iterative method to find every level ` `// minimum element of Binary Tree ` `void` `printPerLevelMinimum(Node* root) ` `{ ` ` `  `    ``// Base Case ` `    ``if` `(root == NULL) ` `        ``return` `; ` ` `  `    ``// Create an empty queue for  ` `    ``// level order traversal ` `    ``queue q; ` ` `  `    ``// push the root for Change the level ` `    ``q.push(root); ` ` `  `    ``// for go level by level ` `    ``q.push(NULL); ` ` `  `    ``int` `min = INT_MAX; ` `    ``// for check the level ` `    ``int` `level = 0; ` ` `  `    ``while` `(q.empty() == ``false``) { ` ` `  `        ``// Get top of queue ` `        ``Node* node = q.front(); ` `        ``q.pop(); ` ` `  `        ``// if node == NULL (Means this is  ` `        ``// boundary between two levels) ` `        ``if` `(node == NULL) { ` ` `  `            ``cout << ``"level "` `<< level <<  ` `             ``" min is = "` `<< min << ``"\n"``; ` ` `  `            ``// here queue is empty represent ` `            ``// no element in the actual ` `            ``// queue ` `            ``if` `(q.empty()) ` `                ``break``; ` ` `  `            ``q.push(NULL); ` ` `  `            ``// increment level ` `            ``level++; ` ` `  `            ``// Reset min for next level  ` `            ``// minimum value ` `            ``min = INT_MAX; ` ` `  `            ``continue``; ` `        ``} ` ` `  `        ``// get Minimum in every level ` `        ``if` `(min > node->data) ` `            ``min = node->data; ` ` `  `        ``/* Enqueue left child */` `        ``if` `(node->left != NULL) { ` `            ``q.push(node->left); ` `        ``} ` ` `  `        ``/*Enqueue right child */` `        ``if` `(node->right != NULL) { ` `            ``q.push(node->right); ` `        ``} ` `    ``} ` `} ` ` `  `// Utility function to create a  ` `// new tree node ` `Node* newNode(``int` `data) ` `{ ` `     `  `    ``Node* temp = ``new` `Node; ` `    ``temp->data = data; ` `    ``temp->left = temp->right = NULL; ` `     `  `    ``return` `temp; ` `} ` ` `  `// Driver program to test above functions ` `int` `main() ` `{ ` `     `  `    ``// Let us create binary tree shown  ` `    ``// in above diagram ` `    ``Node* root = newNode(7); ` `    ``root->left = newNode(6); ` `    ``root->right = newNode(5); ` `    ``root->left->left = newNode(4); ` `    ``root->left->right = newNode(3); ` `    ``root->right->left = newNode(2); ` `    ``root->right->right = newNode(1); ` ` `  `    ``/*      7 ` `        ``/  \ ` `       ``6    5 ` `      ``/ \  / \ ` `     ``4  3 2   1         */` ` `  `    ``cout << ``"Every Level minimum is"` `        ``<< ``"\n"``; ` `         `  `    ``printPerLevelMinimum(root); ` `     `  `    ``return` `0; ` `} `

## Java

 `// JAVA program to print minimum element ` `// in each level of binary tree. ` `import` `java.util.*; ` ` `  `class` `GFG ` `{ ` ` `  `// A Binary Tree Node ` `static` `class` `Node  ` `{ ` `    ``int` `data; ` `    ``Node left, right; ` `}; ` ` `  `// return height of tree ` `static` `int` `heightoftree(Node root) ` `{ ` ` `  `    ``if` `(root == ``null``) ` `        ``return` `0``; ` ` `  `    ``int` `left = heightoftree(root.left); ` `    ``int` `right = heightoftree(root.right); ` ` `  `    ``return` `((left > right ? left : right) + ``1``); ` `} ` ` `  `// Iterative method to find every level ` `// minimum element of Binary Tree ` `static` `void` `printPerLevelMinimum(Node root) ` `{ ` ` `  `    ``// Base Case ` `    ``if` `(root == ``null``) ` `        ``return` `; ` ` `  `    ``// Create an empty queue for  ` `    ``// level order traversal ` `    ``Queue q = ``new` `LinkedList(); ` ` `  `    ``// push the root for Change the level ` `    ``q.add(root); ` ` `  `    ``// for go level by level ` `    ``q.add(``null``); ` ` `  `    ``int` `min = Integer.MAX_VALUE; ` `    ``// for check the level ` `    ``int` `level = ``0``; ` ` `  `    ``while` `(q.isEmpty() == ``false``) ` `    ``{ ` ` `  `        ``// Get top of queue ` `        ``Node node = q.peek(); ` `        ``q.remove(); ` ` `  `        ``// if node == null (Means this is  ` `        ``// boundary between two levels) ` `        ``if` `(node == ``null``) ` `        ``{ ` ` `  `            ``System.out.print(``"level "` `+ level +  ` `            ``" min is = "` `+ min+ ``"\n"``); ` ` `  `            ``// here queue is empty represent ` `            ``// no element in the actual ` `            ``// queue ` `            ``if` `(q.isEmpty()) ` `                ``break``; ` ` `  `            ``q.add(``null``); ` ` `  `            ``// increment level ` `            ``level++; ` ` `  `            ``// Reset min for next level  ` `            ``// minimum value ` `            ``min = Integer.MAX_VALUE; ` ` `  `            ``continue``; ` `        ``} ` ` `  `        ``// get Minimum in every level ` `        ``if` `(min > node.data) ` `            ``min = node.data; ` ` `  `        ``/* Enqueue left child */` `        ``if` `(node.left != ``null``)  ` `        ``{ ` `            ``q.add(node.left); ` `        ``} ` ` `  `        ``/*Enqueue right child */` `        ``if` `(node.right != ``null``) ` `        ``{ ` `            ``q.add(node.right); ` `        ``} ` `    ``} ` `} ` ` `  `// Utility function to create a  ` `// new tree node ` `static` `Node newNode(``int` `data) ` `{ ` `     `  `    ``Node temp = ``new` `Node(); ` `    ``temp.data = data; ` `    ``temp.left = temp.right = ``null``; ` `     `  `    ``return` `temp; ` `} ` ` `  `// Driver code ` `public` `static` `void` `main(String[] args) ` `{ ` `     `  `    ``// Let us create binary tree shown  ` `    ``// in above diagram ` `    ``Node root = newNode(``7``); ` `    ``root.left = newNode(``6``); ` `    ``root.right = newNode(``5``); ` `    ``root.left.left = newNode(``4``); ` `    ``root.left.right = newNode(``3``); ` `    ``root.right.left = newNode(``2``); ` `    ``root.right.right = newNode(``1``); ` ` `  `    ``/*     7 ` `        ``/ \ ` `    ``6 5 ` `    ``/ \ / \ ` `    ``4 3 2 1         */` ` `  `    ``System.out.print(``"Every Level minimum is"` `    ``+ ``"\n"``); ` `         `  `    ``printPerLevelMinimum(root); ` `     `  `} ` `} ` ` `  `// This code is contributed by Rajput-Ji `

## Python3

 `# Python3 program to prminimum element  ` `# in each level of binary tree.  ` ` `  `# Importing Queue ` `from` `queue ``import` `Queue ` ` `  `# Utility class to create a  ` `# new tree node  ` `class` `newNode: ` `    ``def` `__init__(``self``, data): ` `        ``self``.data ``=` `data  ` `        ``self``.left ``=` `self``.right ``=` `None` `     `  `# return height of tree p ` `def` `heightoftree(root): ` ` `  `    ``if` `(root ``=``=` `None``):  ` `        ``return` `0` ` `  `    ``left ``=` `heightoftree(root.left)  ` `    ``right ``=` `heightoftree(root.right)  ` `    ``if` `left > right: ` `        ``return` `left ``+` `1` `    ``else``: ` `        ``return` `right ``+` `1` `         `  `# Iterative method to find every level  ` `# minimum element of Binary Tree  ` `def` `printPerLevelMinimum(root): ` ` `  `    ``# Base Case  ` `    ``if` `(root ``=``=` `None``):  ` `        ``return` ` `  `    ``# Create an empty queue for  ` `    ``# level order traversal  ` `    ``q ``=` `Queue()  ` ` `  `    ``# put the root for Change the level  ` `    ``q.put(root)  ` ` `  `    ``# for go level by level  ` `    ``q.put(``None``)  ` ` `  `    ``Min` `=` `9999999999999` `     `  `    ``# for check the level  ` `    ``level ``=` `0` ` `  `    ``while` `(q.empty() ``=``=` `False``):  ` ` `  `        ``# Get get of queue  ` `        ``node ``=` `q.queue[``0``]  ` `        ``q.get()  ` ` `  `        ``# if node == None (Means this is  ` `        ``# boundary between two levels)  ` `        ``if` `(node ``=``=` `None``):  ` ` `  `            ``print``(``"level"``, level, ``"min is ="``, ``Min``)  ` ` `  `            ``# here queue is empty represent  ` `            ``# no element in the actual  ` `            ``# queue  ` `            ``if` `(q.empty()):  ` `                ``break` ` `  `            ``q.put(``None``)  ` ` `  `            ``# increment level  ` `            ``level ``+``=` `1` ` `  `            ``# Reset min for next level  ` `            ``# minimum value  ` `            ``Min` `=` `999999999999` ` `  `            ``continue` ` `  `        ``# get Minimum in every level  ` `        ``if` `(``Min` `> node.data):  ` `            ``Min` `=` `node.data  ` ` `  `        ``# Enqueue left child  ` `        ``if` `(node.left !``=` `None``):  ` `            ``q.put(node.left)  ` ` `  `        ``#Enqueue right child  ` `        ``if` `(node.right !``=` `None``):  ` `            ``q.put(node.right) ` ` `  `# Driver Code ` `if` `__name__ ``=``=` `'__main__'``: ` `     `  `    ``# Let us create binary tree shown  ` `    ``# in above diagram  ` `    ``root ``=` `newNode(``7``)  ` `    ``root.left ``=` `newNode(``6``)  ` `    ``root.right ``=` `newNode(``5``)  ` `    ``root.left.left ``=` `newNode(``4``)  ` `    ``root.left.right ``=` `newNode(``3``)  ` `    ``root.right.left ``=` `newNode(``2``)  ` `    ``root.right.right ``=` `newNode(``1``)  ` ` `  `    ``#     7  ` `    ``# / \  ` `    ``# 6 5  ` `    ``# / \ / \  ` `    ``# 4 3 2 1          ` `    ``print``(``"Every Level minimum is"``) ` `         `  `    ``printPerLevelMinimum(root) ` ` `  `# This code is contributed by PranchalK `

## C#

 `// C# program to print minimum element ` `// in each level of binary tree. ` `using` `System; ` `using` `System.Collections.Generic; ` ` `  `class` `GFG ` `{ ` ` `  `// A Binary Tree Node ` `class` `Node  ` `{ ` `    ``public` `int` `data; ` `    ``public` `Node left, right; ` `}; ` ` `  `// return height of tree ` `static` `int` `heightoftree(Node root) ` `{ ` ` `  `    ``if` `(root == ``null``) ` `        ``return` `0; ` ` `  `    ``int` `left = heightoftree(root.left); ` `    ``int` `right = heightoftree(root.right); ` ` `  `    ``return` `((left > right ? left : right) + 1); ` `} ` ` `  `// Iterative method to find every level ` `// minimum element of Binary Tree ` `static` `void` `printPerLevelMinimum(Node root) ` `{ ` ` `  `    ``// Base Case ` `    ``if` `(root == ``null``) ` `        ``return``; ` ` `  `    ``// Create an empty queue for  ` `    ``// level order traversal ` `    ``Queue q = ``new` `Queue(); ` ` `  `    ``// push the root for Change the level ` `    ``q.Enqueue(root); ` ` `  `    ``// for go level by level ` `    ``q.Enqueue(``null``); ` ` `  `    ``int` `min = ``int``.MaxValue; ` `    ``// for check the level ` `    ``int` `level = 0; ` ` `  `    ``while` `(q.Count != 0) ` `    ``{ ` ` `  `        ``// Get top of queue ` `        ``Node node = q.Peek(); ` `        ``q.Dequeue(); ` ` `  `        ``// if node == null (Means this is  ` `        ``// boundary between two levels) ` `        ``if` `(node == ``null``) ` `        ``{ ` ` `  `            ``Console.Write(``"level "` `+ level +  ` `                          ``" min is = "` `+ min + ``"\n"``); ` ` `  `            ``// here queue is empty represent ` `            ``// no element in the actual ` `            ``// queue ` `            ``if` `(q.Count == 0) ` `                ``break``; ` ` `  `            ``q.Enqueue(``null``); ` ` `  `            ``// increment level ` `            ``level++; ` ` `  `            ``// Reset min for next level  ` `            ``// minimum value ` `            ``min = ``int``.MaxValue; ` ` `  `            ``continue``; ` `        ``} ` ` `  `        ``// get Minimum in every level ` `        ``if` `(min > node.data) ` `            ``min = node.data; ` ` `  `        ``/* Enqueue left child */` `        ``if` `(node.left != ``null``)  ` `        ``{ ` `            ``q.Enqueue(node.left); ` `        ``} ` ` `  `        ``/*Enqueue right child */` `        ``if` `(node.right != ``null``) ` `        ``{ ` `            ``q.Enqueue(node.right); ` `        ``} ` `    ``} ` `} ` ` `  `// Utility function to create a  ` `// new tree node ` `static` `Node newNode(``int` `data) ` `{ ` `    ``Node temp = ``new` `Node(); ` `    ``temp.data = data; ` `    ``temp.left = temp.right = ``null``; ` `     `  `    ``return` `temp; ` `} ` ` `  `// Driver code ` `public` `static` `void` `Main(String[] args) ` `{ ` `     `  `    ``// Let us create binary tree shown  ` `    ``// in above diagram ` `    ``Node root = newNode(7); ` `    ``root.left = newNode(6); ` `    ``root.right = newNode(5); ` `    ``root.left.left = newNode(4); ` `    ``root.left.right = newNode(3); ` `    ``root.right.left = newNode(2); ` `    ``root.right.right = newNode(1); ` ` `  `    ``/* 7 ` `        ``/ \ ` `    ``6 5 ` `    ``/ \ / \ ` `    ``4 3 2 1     */` ` `  `    ``Console.Write(``"Every Level minimum is"` `+ ``"\n"``); ` `         `  `    ``printPerLevelMinimum(root); ` `} ` `} ` ` `  `// This code is contributed by PrinciRaj1992 `

Output:

```Every level minimum is
level 0 min is = 7
level 1 min is = 5
level 2 min is = 1
```

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.