# Smallest sum contiguous subarray | Set-2

• Difficulty Level : Easy
• Last Updated : 21 May, 2021

Given an array containing N integers. The task is to find the sum of the elements of the contiguous subarray having the smallest(minimum) sum.
Examples

```Input: arr[] = {3, -4, 2, -3, -1, 7, -5}
Output:-6

Input: arr = {2, 6, 8, 1, 4}
Output: 1```

An approach has already been discussed in the previous post. In this post, a solution using the approach of Largest Sum Contiguous Subarray is discussed. This is based on the fact that in order to find the minimum contiguous sum we can first make the elements of the original array negative ie. Replace each ar[i] by -ar[i] and then apply Kadane Algorithm. Clearly, if this is the max sum formed then the minimum sum would be the negative of this sum.
Below is the implementation of above approach:

## C++

 `// C++ program for``// Smallest sum contiguous subarray | Set 2``#include ` `using` `namespace` `std;` `// function to find the smallest sum contiguous subarray``int` `smallestSumSubarr(``int` `arr[], ``int` `n)``{``    ``// First invert the sign of the elements``    ``for` `(``int` `i = 0; i < n; i++)``        ``arr[i] = -arr[i];` `    ``// Apply the normal Kadane algorithm But on the elements``    ``// Of the array having inverted sign``    ``int` `sum_here = arr[0], max_sum = arr[0];` `    ``for` `(``int` `i = 1; i < n; i++) {` `        ``sum_here = max(sum_here + arr[i], arr[i]);``        ``max_sum = max(max_sum, sum_here);``    ``}` `    ``// Invert  the answer to get minimum val``    ``return` `(-1) * max_sum;``}` `// Driver Code``int` `main()``{``    ``int` `arr[] = { 3, -4, 2, -3, -1, 7, -5 };` `    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr[0]);` `    ``cout << ``"Smallest sum: "``         ``<< smallestSumSubarr(arr, n);``    ``return` `0;``}`

## Java

 `// Java program for Smallest``// sum contiguous subarray | Set 2``import` `java.io.*;` `class` `GFG``{` `// function to find the``// smallest sum contiguous``// subarray``static` `int` `smallestSumSubarr(``int` `arr[],``                             ``int` `n)``{``    ``// First invert the``    ``// sign of the elements``    ``for` `(``int` `i = ``0``; i < n; i++)``        ``arr[i] = -arr[i];` `    ``// Apply the normal Kadane``    ``// algorithm But on the``    ``// elements Of the array``    ``// having inverted sign``    ``int` `sum_here = arr[``0``],``        ``max_sum = arr[``0``];` `    ``for` `(``int` `i = ``1``; i < n; i++)``    ``{``        ``sum_here = Math.max(sum_here +``                            ``arr[i], arr[i]);``        ``max_sum = Math.max(max_sum,``                           ``sum_here);``    ``}` `    ``// Invert the answer``    ``// to get minimum val``    ``return` `(-``1``) * max_sum;``}` `// Driver Code``public` `static` `void` `main (String[] args)``{``    ``int` `arr[] = {``3``, -``4``, ``2``, -``3``,``                ``-``1``, ``7``, -``5``};` `    ``int` `n = arr.length;` `    ``System.out.print(``"Smallest sum: "` `+``            ``smallestSumSubarr(arr, n));``}``}` `// This code is contributed``// by inder_verma.`

## Python3

 `# Python3 program for``# Smallest sum contiguous subarray | Set 2` `# function to find the smallest``# sum contiguous subarray``def` `smallestSumSubarr(arr, n):``    ` `    ``# First invert the sign of the elements``    ``for` `i ``in` `range``(n):``        ``arr[i] ``=` `-``arr[i]` `    ``# Apply the normal Kadane algorithm but``    ``# on the elements of the array having inverted sign``    ``sum_here ``=` `arr[``0``]``    ``max_sum ``=` `arr[``0``]` `    ``for` `i ``in` `range``(``1``, n):` `        ``sum_here ``=` `max``(sum_here ``+` `arr[i], arr[i])``        ``max_sum ``=` `max``(max_sum, sum_here)` `    ``# Invert the answer to get minimum val``    ``return` `(``-``1``) ``*` `max_sum` `# Driver Code``arr ``=` `[``3``, ``-``4``, ``2``, ``-``3``, ``-``1``, ``7``, ``-``5``]` `n ``=` `len``(arr)` `print``(``"Smallest sum:"``,``       ``smallestSumSubarr(arr, n))` `# This code is contributed by Mohit Kumar`

## C#

 `// C# program for Smallest``// sum contiguous subarray | Set 2``using` `System;``class` `GFG``{` `// function to find the``// smallest sum contiguous``// subarray``static` `int` `smallestSumSubarr(``int` `[]arr,``                             ``int` `n)``{``    ``// First invert the``    ``// sign of the elements``    ``for` `(``int` `i = 0; i < n; i++)``        ``arr[i] = -arr[i];` `    ``// Apply the normal Kadane``    ``// algorithm But on the``    ``// elements Of the array``    ``// having inverted sign``    ``int` `sum_here = arr[0],``        ``max_sum = arr[0];` `    ``for` `(``int` `i = 1; i < n; i++)``    ``{``        ``sum_here = Math.Max(sum_here +``                            ``arr[i], arr[i]);``        ``max_sum = Math.Max(max_sum,``                           ``sum_here);``    ``}` `    ``// Invert the answer``    ``// to get minimum val``    ``return` `(-1) * max_sum;``}` `// Driver Code``public` `static` `void` `Main ()``{``    ``int` `[]arr = {3, -4, 2, -3,``                ``-1, 7, -5};` `    ``int` `n = arr.Length;` `    ``Console.WriteLine(``"Smallest sum: "` `+``             ``smallestSumSubarr(arr, n));``}``}` `// This code is contributed``// by inder_verma.`

## PHP

 ``

## Javascript

 ``

Output:

`Smallest sum: -6`

Time Complexity: O(n)

My Personal Notes arrow_drop_up