Given an array of non-negative integers. Our task is to find minimum number of elements such that their sum should be greater than the sum of rest of the elements of the array.**Examples :**

Input : arr[] = {3, 1, 7, 1} Output : 1 Smallest subset is {7}. Sum of this subset is greater than all other elements {3, 1, 1} Input : arr[] = {2, 1, 2} Output : 2 In this example one element is not enough. We can pick elements with values 1, 2 or 2, 2. In any case, the minimum count is 2.

The **Brute force** approach is to find the sum of all the possible subsets and then compare sum with the sum of remaining elements.

The **Efficient Approach** is to take the largest elements. We sort values in descending order, then take elements from the largest, until we get strictly more than half of total sum of the given array.

## C++

`// CPP program to find minimum number of` `// elements such that their sum is greater` `// than sum of remaining elements of the array.` `#include <bits/stdc++.h>` `#include <string.h>` `using` `namespace` `std;` `// function to find minimum elements needed.` `int` `minElements(` `int` `arr[], ` `int` `n)` `{` ` ` `// calculating HALF of array sum` ` ` `int` `halfSum = 0;` ` ` `for` `(` `int` `i = 0; i < n; i++)` ` ` `halfSum = halfSum + arr[i]; ` ` ` `halfSum = halfSum / 2;` ` ` `// sort the array in descending order.` ` ` `sort(arr, arr + n, greater<` `int` `>());` ` ` `int` `res = 0, curr_sum = 0;` ` ` `for` `(` `int` `i = 0; i < n; i++) {` ` ` `curr_sum += arr[i];` ` ` `res++;` ` ` `// current sum greater than sum` ` ` `if` `(curr_sum > halfSum) ` ` ` `return` `res;` ` ` `}` ` ` `return` `res;` `}` `// Driver function` `int` `main()` `{` ` ` `int` `arr[] = {3, 1, 7, 1};` ` ` `int` `n = ` `sizeof` `(arr) / ` `sizeof` `(arr[0]);` ` ` `cout << minElements(arr, n) << endl;` ` ` `return` `0;` `}` |

## Java

`// Java code to find minimum number of elements` `// such that their sum is greater than sum of` `// remaining elements of the array.` `import` `java.io.*;` `import` `java.util.*;` `class` `GFG {` ` ` ` ` `// Function to find minimum elements needed` ` ` `static` `int` `minElements(` `int` `arr[], ` `int` `n)` ` ` `{` ` ` `// Calculating HALF of array sum` ` ` `int` `halfSum = ` `0` `;` ` ` `for` `(` `int` `i = ` `0` `; i < n; i++)` ` ` `halfSum = halfSum + arr[i];` ` ` `halfSum = halfSum / ` `2` `;` ` ` ` ` ` ` `// Sort the array in ascending order and` ` ` `// start traversing array from the ascending` ` ` `// sort in descending order.` ` ` `Arrays.sort(arr);` ` ` ` ` `int` `res = ` `0` `, curr_sum = ` `0` `;` ` ` `for` `(` `int` `i = n-` `1` `; i >= ` `0` `; i--) {` ` ` ` ` `curr_sum += arr[i];` ` ` `res++;` ` ` ` ` `// Current sum greater than sum` ` ` `if` `(curr_sum > halfSum) ` ` ` `return` `res;` ` ` `}` ` ` `return` `res;` ` ` `}` ` ` ` ` `// Driver Code` ` ` `public` `static` `void` `main (String[] args) {` ` ` `int` `arr[] = {` `3` `, ` `1` `, ` `7` `, ` `1` `};` ` ` `int` `n = arr.length;` ` ` `System.out.println(minElements(arr, n));` ` ` `}` ` ` `}` ` ` `// This code is contributed by Gitanjali` |

## Python3

`# Python3 code to find minimum number of` `# elements such that their sum is greater` `# than sum of remaining elements of the array.` `# function to find minimum elements needed.` `def` `minElements(arr , n):` ` ` `# calculating HALF of array sum` ` ` `halfSum ` `=` `0` ` ` `for` `i ` `in` `range` `(n):` ` ` `halfSum ` `=` `halfSum ` `+` `arr[i]` ` ` ` ` `halfSum ` `=` `int` `(halfSum ` `/` `2` `)` ` ` ` ` `# sort the array in descending order.` ` ` `arr.sort(reverse ` `=` `True` `)` ` ` ` ` `res ` `=` `0` ` ` `curr_sum ` `=` `0` ` ` `for` `i ` `in` `range` `(n):` ` ` ` ` `curr_sum ` `+` `=` `arr[i]` ` ` `res ` `+` `=` `1` ` ` `# current sum greater than sum` ` ` `if` `curr_sum > halfSum:` ` ` `return` `res` ` ` ` ` `return` `res` ` ` `# driver code` `arr ` `=` `[` `3` `, ` `1` `, ` `7` `, ` `1` `]` `n ` `=` `len` `(arr)` `print` `(minElements(arr, n) )` `# This code is contributed by "Sharad_Bhardwaj".` |

## C#

`// C# code to find minimum number of elements` `// such that their sum is greater than sum of` `// remaining elements of the array.` `using` `System;` `class` `GFG {` ` ` ` ` `// Function to find minimum elements needed` ` ` `static` `int` `minElements(` `int` `[]arr, ` `int` `n)` ` ` `{` ` ` ` ` `// Calculating HALF of array sum` ` ` `int` `halfSum = 0;` ` ` ` ` `for` `(` `int` `i = 0; i < n; i++)` ` ` `halfSum = halfSum + arr[i];` ` ` ` ` `halfSum = halfSum / 2;` ` ` ` ` `// Sort the array in ascending order and` ` ` `// start traversing array from the ascending` ` ` `// sort in descending order.` ` ` `Array.Sort(arr);` ` ` ` ` `int` `res = 0, curr_sum = 0;` ` ` `for` `(` `int` `i = n-1; i >= 0; i--) {` ` ` ` ` `curr_sum += arr[i];` ` ` `res++;` ` ` ` ` `// Current sum greater than sum` ` ` `if` `(curr_sum > halfSum) ` ` ` `return` `res;` ` ` `}` ` ` ` ` `return` `res;` ` ` `}` ` ` ` ` `// Driver Code` ` ` `public` `static` `void` `Main ()` ` ` `{` ` ` `int` `[]arr = {3, 1, 7, 1};` ` ` `int` `n = arr.Length;` ` ` ` ` `Console.WriteLine(minElements(arr, n));` ` ` `}` `}` ` ` `// This code is contributed by vt_m.` |

## PHP

`<?php` `// PHP program to find minimum number` `// of elements such that their sum is` `// greater than sum of remaining` `// elements of the array.` `// function to find minimum elements needed.` `function` `minElements(` `$arr` `, ` `$n` `)` `{` ` ` ` ` `// calculating HALF of array sum` ` ` `$halfSum` `= 0;` ` ` `for` `(` `$i` `= 0; ` `$i` `< ` `$n` `; ` `$i` `++)` ` ` `$halfSum` `= ` `$halfSum` `+ ` `$arr` `[` `$i` `];` ` ` `$halfSum` `= ` `$halfSum` `/ 2;` ` ` `// sort the array in descending order.` ` ` `rsort(` `$arr` `);` ` ` `$res` `= 0;` ` ` `$curr_sum` `= 0;` ` ` `for` `(` `$i` `= 0; ` `$i` `< ` `$n` `; ` `$i` `++)` ` ` `{` ` ` `$curr_sum` `+= ` `$arr` `[` `$i` `];` ` ` `$res` `++;` ` ` `// current sum greater than sum` ` ` `if` `(` `$curr_sum` `> ` `$halfSum` `) ` ` ` `return` `$res` `;` ` ` `}` ` ` `return` `$res` `;` `}` `// Driver Code` `$arr` `= ` `array` `(3, 1, 7, 1);` `$n` `= sizeof(` `$arr` `);` `echo` `minElements(` `$arr` `, ` `$n` `);` ` ` `// This code is contributed by ihritik` `?>` |

## Javascript

`<script>` ` ` `// Javascript program to find minimum number of` ` ` `// elements such that their sum is greater` ` ` `// than sum of remaining elements of the array.` ` ` ` ` `// function to find minimum elements needed.` ` ` `function` `minElements(arr, n)` ` ` `{` ` ` `// calculating HALF of array sum` ` ` `let halfSum = 0;` ` ` `for` `(let i = 0; i < n; i++)` ` ` `halfSum = halfSum + arr[i]; ` ` ` `halfSum = parseInt(halfSum / 2, 10);` ` ` `// sort the array in descending order.` ` ` `arr.sort(` `function` `(a, b){` `return` `a - b});` ` ` `arr.reverse();` ` ` `let res = 0, curr_sum = 0;` ` ` `for` `(let i = 0; i < n; i++) {` ` ` `curr_sum += arr[i];` ` ` `res++;` ` ` `// current sum greater than sum` ` ` `if` `(curr_sum > halfSum) ` ` ` `return` `res;` ` ` `}` ` ` `return` `res;` ` ` `}` ` ` ` ` `let arr = [3, 1, 7, 1];` ` ` `let n = arr.length;` ` ` `document.write(minElements(arr, n));` ` ` ` ` `// This code is contributed by divyeshrabadiya07.` `</script>` |

**Output:**

1

**Time Complexity :** O(n Log n)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready.