Smallest square formed with given rectangles

Given a rectangle of length l and breadth b, we need to find the area of the smallest square which can be formed with the rectangles of these given dimensions.
Examples:

Input : 1 2
Output : 4
We can form a 2 x 2 square
using two rectangles of size
1 x 2.

Input : 7 10
Output :4900

Let’s say we want to make a square of side length a from rectangles of length l & b. This means that a is a multiple of both l & b. Since we want the smallest square, it has to be the lowest common multiple (LCM) of l & b.

Program 1:

C++



filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ Program to find the area
// of the smallest square which
// can be formed with rectangles
// of given dimensions
#include <bits/stdc++.h>
using namespace std;
// Recursive function to return gcd of a and b
int gcd(int a, int b)
{
    // Everything divides 0
    if (a == 0 || b == 0)
        return 0;
  
    // Base case
    if (a == b)
        return a;
  
    // a is greater
    if (a > b)
        return gcd(a - b, b);
    return gcd(a, b - a);
}
  
// Function to find the area
// of the smallest square
int squarearea(int l, int b)
{
  
    // the length or breadth or side
    // cannot be negative
    if (l < 0 || b < 0)
        return -1;
  
  
        // LCM of length and breadth 
        int n = (l * b) / gcd(l, b); 
  
        // squaring to get the area
        return n * n; 
      
}
  
// Driver code
int main()
{
    int l = 6, b = 4;
    cout << squarearea(l, b) << endl;
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// JavaProgram to find the area
// of the smallest square which
// can be formed with rectangles
// of given dimensions
class GFG 
{
  
// Recursive function to 
// return gcd of a and b
static int gcd(int a, int b)
{
// Everything divides 0
if (a == 0 || b == 0)
    return 0;
  
// Base case
if (a == b)
    return a;
  
// a is greater
if (a > b)
    return gcd(a - b, b);
return gcd(a, b - a);
}
  
// Function to find the area
// of the smallest square
static int squarearea(int l, int b)
{
  
// the length or breadth or side
// cannot be negative
if (l < 0 || b < 0)
    return -1;
  
  
    // LCM of length and breadth 
    int n = (l * b) / gcd(l, b); 
  
    // squaring to get the area
    return n * n; 
  
}
  
// Driver code
public static void main(String[] args) 
{
    int l = 6, b = 4;
    System.out.println(squarearea(l, b));
}
}
  
// This code is contributed 
// by ChitraNayal

chevron_right


Python 3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 Program to find the area
# of the smallest square which
# can be formed with rectangles
# of given dimensions
  
# Recursive function to return gcd of a and b
def gcd( a, b):
  
    # Everything divides 0
    if (a == 0 or b == 0):
        return 0
  
    # Base case
    if (a == b):
        return a
  
    # a is greater
    if (a > b):
        return gcd(a - b, b)
    return gcd(a, b - a)
  
  
# Function to find the area
# of the smallest square
def squarearea( l, b):
  
  
    # the length or breadth or side
    # cannot be negative
    if (l < 0 or b < 0):
        return -1
  
  
        # LCM of length and breadth 
    n = (l * b) / gcd(l, b) 
  
        # squaring to get the area
    return n *
      
  
  
# Driver code
if __name__=='__main__':
    l = 6
    b = 4
    print(int(squarearea(l, b)))
  
#This code is contributed by ash264

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# Program to find the area
// of the smallest square which
// can be formed with rectangles
// of given dimensions
using System;
  
class GFG
{
  
// Recursive function to 
// return gcd of a and b
static int gcd(int a, int b)
{
// Everything divides 0
if (a == 0 || b == 0)
    return 0;
  
// Base case
if (a == b)
    return a;
  
// a is greater
if (a > b)
    return gcd(a - b, b);
return gcd(a, b - a);
}
  
// Function to find the area
// of the smallest square
static int squarearea(int l, int b)
{
  
// the length or breadth or side
// cannot be negative
if (l < 0 || b < 0)
    return -1;
  
  
    // LCM of length and breadth 
    int n = (l * b) / gcd(l, b); 
  
    // squaring to get the area
    return n * n; 
  
}
  
// Driver code
public static void Main() 
{
    int l = 6, b = 4;
    Console.Write(squarearea(l, b));
}
}
  
// This code is contributed 
// by ChitraNayal

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php 
// PHP Program to find the area
// of the smallest square which
// can be formed with rectangles
// of given dimensions
  
// Recursive function to
// return gcd of a and b
function gcd($a, $b)
{
    // Everything divides 0
    if ($a == 0 || $b == 0)
        return 0;
  
    // Base case
    if ($a == $b)
        return $a;
  
    // a is greater
    if ($a > $b)
        return gcd($a - $b, $b);
    return gcd($a, $b - $a);
}
  
// Function to find the area
// of the smallest square
function squarearea($l, $b)
{
  
    // the length or breadth or side
    // cannot be negative
    if ($l < 0 || $b < 0)
        return -1;
  
  
        // LCM of length and breadth 
        $n = ($l * $b) / gcd($l, $b); 
  
        // squaring to get the area
        return $n * $n
      
}
  
// Driver code
$l = 6;
$b = 4;
echo squarearea($l, $b)."\n";
  
// This code is contributed 
// by ChitraNayal
?>

chevron_right


Output:

144


My Personal Notes arrow_drop_up

Budding Web DeveloperKeen learnerAverage CoderDancer&Social Activist

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : chitranayal, ash264