Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Smallest positive integer X satisfying the given equation

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Given two integers N and K, the task is to find the smallest positive integer X satisfying the equation:

(X / K) * (X % K) = N

Examples:  

Input: N = 6, K = 3 
Output: 11 
Explanation: 
For X = 11, (11 / 3) * (11 % 3) = 3 * 2 = 6 
Therefore, the following equation satisfies.

Input: N = 4, K = 6 
Output: 10 
Explanation: 
For X = 10, (10 / 6) * (10 % 6) = 1 * 4 = 4 
Therefore, the following equation satisfies. 
 

Brute Force Approach:

The brute force approach to solve this problem would be to iterate over all positive integers X and check if the given equation is satisfied. If the equation is satisfied for any value of X, we return that value as the smallest positive integer satisfying the equation.

Below is the implementation of the above approach: 

C++




#include <bits/stdc++.h>
using namespace std;
 
// Function to find out the smallest
// positive integer for the equation
int findMinSoln(int n, int k)
{
    int x = 1;
    while (true) {
        if ((x / k) * (x % k) == n) {
            return x;
        }
        x++;
    }
}
 
// Driver Code
int main()
{
    int n = 4, k = 6;
    cout << findMinSoln(n, k);
    return 0;
}

Java




public class Main {
    // Function to find out the smallest
    // positive integer for the equation
    public static int findMinSoln(int n, int k) {
        int x = 1;
        while (true) {
            if ((x / k) * (x % k) == n) {
                return x;
            }
            x++;
        }
    }
 
    // Driver Code
    public static void main(String[] args) {
        int n = 4, k = 6;
        System.out.println(findMinSoln(n, k));
    }
}

Python3




# Function to find out the smallest
# positive integer for the equation
def findMinSoln(n, k):
    x = 1
    while True:
        if (x // k) * (x % k) == n:
            return x
        x += 1
 
# Driver Code
if __name__ == '__main__':
    n, k = 4, 6
    print(findMinSoln(n, k))

Output

10

Time Complexity: O(X), which can be very large if X is a large number.
Auxiliary Space : O(1)

Approach: 

The idea is to observe that, since (X / K) * (X % K) = N, therefore, N will be divisible by p = X % K, which is less than K. Therefore, for all i in the range [1, K) try all values of p where: 

x = p \cdot\frac{n - p}{k}

Below is the implementation of the above approach: 

C++




// C++ Program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find out the smallest
// positive integer for the equation
int findMinSoln(int n, int k)
{
    // Stores the minimum
    int minSoln = INT_MAX;
 
    // Iterate till K
    for (int i = 1; i < k; i++) {
 
        // Check if n is divisible by i
        if (n % i == 0)
            minSoln
                = min(minSoln, (n / i) * k + i);
    }
 
    // Return the answer
    return minSoln;
}
 
// Driver Code
int main()
{
    int n = 4, k = 6;
    cout << findMinSoln(n, k);
}

Java




// Java Program to implement
// the above approach
import java.util.*;
class GFG{
  
// Function to find out the smallest
// positive integer for the equation
static int findMinSoln(int n, int k)
{
    // Stores the minimum
    int minSoln = Integer.MAX_VALUE;
  
    // Iterate till K
    for (int i = 1; i < k; i++)
    {
  
        // Check if n is divisible by i
        if (n % i == 0)
            minSoln = Math.min(minSoln, (n / i) * k + i);
    }
  
    // Return the answer
    return minSoln;
}
  
// Driver Code
public static void main(String[] args)
{
    int n = 4, k = 6;
    System.out.println(findMinSoln(n, k));
}
}
 
// This code is contributed by Ritik Bansal

Python3




# Python3 program to implement
# the above approach
import sys
 
# Function to find out the smallest
# positive integer for the equation
def findMinSoln(n, k):
     
    # Stores the minimum
    minSoln = sys.maxsize;
 
    # Iterate till K
    for i in range(1, k):
 
        # Check if n is divisible by i
        if (n % i == 0):
            minSoln = min(minSoln, (n // i) * k + i);
     
    # Return the answer
    return minSoln;
 
# Driver Code
if __name__ == '__main__':
     
    n = 4;
    k = 6;
     
    print(findMinSoln(n, k));
 
# This code is contributed by amal kumar choubey

C#




// C# program to implement
// the above approach
using System;
 
class GFG{
 
// Function to find out the smallest
// positive integer for the equation
static int findMinSoln(int n, int k)
{
     
    // Stores the minimum
    int minSoln = int.MaxValue;
 
    // Iterate till K
    for (int i = 1; i < k; i++)
    {
 
        // Check if n is divisible by i
        if (n % i == 0)
            minSoln = Math.Min(minSoln,
                              (n / i) * k + i);
    }
 
    // Return the answer
    return minSoln;
}
 
// Driver Code
public static void Main(String[] args)
{
    int n = 4, k = 6;
     
    Console.WriteLine(findMinSoln(n, k));
}
}
 
// This code is contributed by amal kumar choubey

Javascript




<script>
 
 
// Javascript Program to implement
// the above approach
 
// Function to find out the smallest
// positive integer for the equation
function findMinSoln(n, k)
{
 
    // Stores the minimum
    var minSoln = 1000000000;
 
    // Iterate till K
    for (var i = 1; i < k; i++) {
 
        // Check if n is divisible by i
        if (n % i == 0)
            minSoln
                = Math.min(minSoln, (n / i) * k + i);
    }
 
    // Return the answer
    return minSoln;
}
 
// Driver Code
var n = 4, k = 6;
document.write( findMinSoln(n, k));
 
// This code is contributed by rutvik_56.
</script>

Output: 

10

 

Time Complexity: O(N) 
Auxiliary Space: O(1)
 


My Personal Notes arrow_drop_up
Last Updated : 18 Apr, 2023
Like Article
Save Article
Similar Reads
Related Tutorials