Smallest perfect Cube divisible by all elements of an array

Given an array arr[], the task is to find the smallest perfect cube which is divisible by all the elements of the given array.

Examples:

Input: arr[] = {20, 4, 128, 7}
Output: 21952000

Input: arr[] = {10, 125, 14, 42, 100}
Output: 9261000

Naive Approach: Check all perfect cubes one by one starting from 1 and select the one which is divisible by all the elements of the array.

Efficient Approach: Find the least common multiple of all the elements of the array and store it in a variable lcm. Find all prime factor of the found LCM.
Now for every prime factor fact which divides the lcm ‘x’ number of times where x % 3 != 0:

Print the updated LCM in the end.

Below is the implementation of the above approach:

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
#define ll long long int
  
// Function to return the gcd of two numbers
ll gcd(ll a, ll b)
{
    if (b == 0)
        return a;
    else
        return gcd(b, a % b);
}
  
// Function to return the lcm of
// all the elements of the array
ll lcmOfArray(int arr[], int n)
{
    if (n < 1)
        return 0;
  
    ll lcm = arr[0];
  
    // To calculate lcm of two numbers
    // multiply them and divide the result
    // by gcd of both the numbers
    for (int i = 1; i < n; i++)
        lcm = (lcm * arr[i]) / gcd(lcm, arr[i]);
  
    // Return the LCM of the array elements
    return lcm;
}
  
// Function to return the smallest perfect cube
// divisible by all the elements of arr[]
int minPerfectCube(int arr[], int n)
{
    ll minPerfectCube;
  
    // LCM of all the elements of arr[]
    ll lcm = lcmOfArray(arr, n);
    minPerfectCube = (long long)lcm;
  
    int cnt = 0;
    while (lcm > 1 && lcm % 2 == 0) {
        cnt++;
        lcm /= 2;
    }
  
    // If 2 divides lcm cnt number of times
    if (cnt % 3 == 2)
        minPerfectCube *= 2;
    else if (cnt % 3 == 1)
        minPerfectCube *= 4;
  
    int i = 3;
  
    // Check all the numbers that divide lcm
    while (lcm > 1) {
        cnt = 0;
        while (lcm % i == 0) {
            cnt++;
            lcm /= i;
        }
  
        if (cnt % 3 == 1)
            minPerfectCube *= i * i;
        else if (cnt % 3 == 2)
            minPerfectCube *= i;
  
        i += 2;
    }
  
    // Return the answer
    return minPerfectCube;
}
  
// Driver code
int main()
{
    int arr[] = { 10, 125, 14, 42, 100 };
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << minPerfectCube(arr, n);
  
    return 0;
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
import java.util.*;
  
class GFG
{
  
// Function to return the gcd of two numbers
static int gcd(int a, int b)
{
    if (b == 0)
        return a;
    else
        return gcd(b, a % b);
}
  
// Function to return the lcm of
// aint the elements of the array
static int lcmOfArray(int arr[], int n)
{
    if (n < 1)
        return 0;
  
    int lcm = arr[0];
  
    // To calculate lcm of two numbers
    // multiply them and divide the result
    // by gcd of both the numbers
    for (int i = 1; i < n; i++)
        lcm = (lcm * arr[i]) / gcd(lcm, arr[i]);
  
    // Return the LCM of the array elements
    return lcm;
}
  
// Function to return the smaintest perfect cube
// divisible by aint the elements of arr[]
static int minPerfectCube(int arr[], int n)
{
    int minPerfectCube;
  
    // LCM of all the elements of arr[]
    int lcm = lcmOfArray(arr, n);
    minPerfectCube = lcm;
  
    int cnt = 0;
    while (lcm > 1 && lcm % 2 == 0)
    {
        cnt++;
        lcm /= 2;
    }
  
    // If 2 divides lcm cnt number of times
    if (cnt % 3 == 2)
        minPerfectCube *= 2;
    else if (cnt % 3 == 1)
        minPerfectCube *= 4;
  
    int i = 3;
  
    // Check aint the numbers that divide lcm
    while (lcm > 1
    {
        cnt = 0;
        while (lcm % i == 0)
        {
            cnt++;
            lcm /= i;
        }
  
        if (cnt % 3 == 1)
            minPerfectCube *= i * i;
        else if (cnt % 3 == 2)
            minPerfectCube *= i;
  
        i += 2;
    }
  
    // Return the answer
    return minPerfectCube;
}
  
// Driver code
public static void main(String args[])
{
    int arr[] = { 10, 125, 14, 42, 100 };
    int n = arr.length;
    System.out.println(minPerfectCube(arr, n));
}
}
  
// This code is contributed by
// Surendra_Gangwar
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach 
  
# Function to return the gcd of two numbers 
def gcd(a, b) :
      
    if (b == 0) :
        return a
    else :
        return gcd(b, a % b)
  
# Function to return the lcm of 
# all the elements of the array 
def lcmOfArray(arr, n) :
      
    if (n < 1) :
        return 0
  
    lcm = arr[0]
  
    # To calculate lcm of two numbers 
    # multiply them and divide the result 
    # by gcd of both the numbers 
    for i in range(n) : 
        lcm = (lcm * arr[i]) // gcd(lcm, arr[i]); 
  
    # Return the LCM of the array elements 
    return lcm
  
# Function to return the smallest perfect cube 
# divisible by all the elements of arr[] 
def minPerfectCube(arr, n) :
      
    # LCM of all the elements of arr[] 
    lcm = lcmOfArray(arr, n)
    minPerfectCube = lcm
  
    cnt = 0
    while (lcm > 1 and lcm % 2 == 0) :
        cnt += 1
        lcm //= 2
      
    # If 2 divides lcm cnt number of times 
    if (cnt % 3 == 2) :
        minPerfectCube *= 2
          
    elif (cnt % 3 == 1) :
        minPerfectCube *= 4
  
    i = 3
      
    # Check all the numbers that divide lcm 
    while (lcm > 1) :
        cnt = 0
          
        while (lcm % i == 0) :
            cnt += 1
            lcm //=
          
        if (cnt % 3 == 1) :
            minPerfectCube *= i * i
              
        elif (cnt % 3 == 2) :
            minPerfectCube *= i
  
        i += 2
  
    # Return the answer 
    return minPerfectCube 
  
# Driver code 
if __name__ == "__main__" :
  
    arr = [ 10, 125, 14, 42, 100
      
    n = len(arr)
    print(minPerfectCube(arr, n)) 
      
# This code is contributed by Ryuga
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach
using System;
  
class GFG
{
  
// Function to return the gcd of two numbers
static int gcd(int a, int b)
{
    if (b == 0)
        return a;
    else
        return gcd(b, a % b);
}
  
// Function to return the lcm of
// aint the elements of the array
static int lcmOfArray(int []arr, int n)
{
    if (n < 1)
        return 0;
  
    int lcm = arr[0];
  
    // To calculate lcm of two numbers
    // multiply them and divide the result
    // by gcd of both the numbers
    for (int i = 1; i < n; i++)
        lcm = (lcm * arr[i]) / gcd(lcm, arr[i]);
  
    // Return the LCM of the array elements
    return lcm;
}
  
// Function to return the smaintest perfect cube
// divisible by aint the elements of arr[]
static int minPerfectCube(int []arr, int n)
{
    int minPerfectCube;
  
    // LCM of all the elements of arr[]
    int lcm = lcmOfArray(arr, n);
    minPerfectCube = lcm;
  
    int cnt = 0;
    while (lcm > 1 && lcm % 2 == 0)
    {
        cnt++;
        lcm /= 2;
    }
  
    // If 2 divides lcm cnt number of times
    if (cnt % 3 == 2)
        minPerfectCube *= 2;
    else if (cnt % 3 == 1)
        minPerfectCube *= 4;
  
    int i = 3;
  
    // Check aint the numbers that divide lcm
    while (lcm > 1) 
    {
        cnt = 0;
        while (lcm % i == 0)
        {
            cnt++;
            lcm /= i;
        }
  
        if (cnt % 3 == 1)
            minPerfectCube *= i * i;
        else if (cnt % 3 == 2)
            minPerfectCube *= i;
  
        i += 2;
    }
  
    // Return the answer
    return minPerfectCube;
}
  
// Driver code
public static void Main()
{
    int []arr = { 10, 125, 14, 42, 100 };
    int n = arr.Length;
    Console.WriteLine(minPerfectCube(arr, n));
}
}
  
// This code is contributed by chandan_jnu
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP implementation of the approach
  
// Function to return the gcd of two numbers
function gcd($a, $b)
{
    if ($b == 0)
        return $a;
    else
        return gcd($b, $a % $b);
}
  
// Function to return the lcm of
// all the elements of the array
function lcmOfArray(&$arr, $n)
{
    if ($n < 1)
        return 0;
  
    $lcm = $arr[0];
  
    // To calculate lcm of two numbers
    // multiply them and divide the result
    // by gcd of both the numbers
    for ($i = 1; $i < $n; $i++)
        $lcm = ($lcm * $arr[$i]) / 
            gcd($lcm, $arr[$i]);
  
    // Return the LCM of the array elements
    return $lcm;
}
  
// Function to return the smallest perfect cube
// divisible by all the elements of arr[]
function minPerfectCube(&$arr, $n)
{
      
    // LCM of all the elements of arr[]
    $lcm = lcmOfArray($arr, $n);
    $minPerfectCube = $lcm;
  
    $cnt = 0;
    while ($lcm > 1 && $lcm % 2 == 0)
    {
        $cnt++;
        $lcm /= 2;
    }
  
    // If 2 divides lcm cnt number of times
    if ($cnt % 3 == 2)
        $minPerfectCube *= 2;
    else if ($cnt % 3 == 1)
        $minPerfectCube *= 4;
  
    $i = 3;
  
    // Check all the numbers that divide lcm
    while ($lcm > 1) 
    {
        $cnt = 0;
        while ($lcm % $i == 0)
        {
            $cnt++;
            $lcm /= $i;
        }
  
        if ($cnt % 3 == 1)
            $minPerfectCube *= $i * $i;
        else if ($cnt % 3 == 2)
            $minPerfectCube *= $i;
  
        $i += 2;
    }
  
    // Return the answer
    return $minPerfectCube;
}
  
// Driver code
$arr = array(10, 125, 14, 42, 100 );
$n = sizeof($arr);
echo(minPerfectCube($arr, $n));
  
// This code is contributed by Shivi_Aggarwal
?>
chevron_right

Output:
9261000



Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.





Article Tags :
Practice Tags :