Open In App
Related Articles

Smallest number whose sum of digits is square of N

Improve Article
Improve
Save Article
Save
Like Article
Like

Given an integer N, the task is to find the smallest number whose sum of digits is N2.

Examples: 

Input: N = 4 
Output: 79 
24 = 16 
sum of digits of 79 = 76

Input: N = 6 
Output: 9999 
210 = 1024 which has 4 digits 

 

Approach: The idea is to find the general term for the smallest number whose sum of digits is square of N. That is 
 

// First Few terms 
First Term = 1 // N = 1
Second Term = 4 // N = 2
Third Term = 9 // N = 3
Fourth Term = 79 // N = 4
.
.
Nth Term:

*** QuickLaTeX cannot compile formula:
 

*** Error message:
Error: Nothing to show, formula is empty

 <sup>(n^2 \% 9 + 1) * 10 ^ {\lfloor n^2/9 \rfloor} - 1 </sup>

Below is the implementation of the above approach:
 

C++




// C++ implementation of the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to return smallest
// number whose sum of digits is n^2
int smallestNum(int n)
{
    return (n * n % 9 + 1) * pow(10, n * n / 9) - 1;
}
 
// Driver Code
int main()
{
    int n = 4;
    cout << smallestNum(n);
 
    return 0;
}


Java




// Java implementation of the above approach
import java.util.*;
 
class GFG{
 
// Function to return smallest
// number whose sum of digits is n^2
static int smallestNum(int n)
{
    return (int)((n * n % 9 + 1) *
         Math.pow(10, n * n / 9) - 1);
}
 
// Driver Code
public static void main(String[] args)
{
    int n = 4;
     
    System.out.print(smallestNum(n));
}
}
 
// This code is contributed by Rajput-Ji


Python 3




# Python implementation of the above approach
 
# Function to return smallest
# number whose sum of digits is n^2
def smallestNum(n):
 
    return ((n * n % 9 + 1*
          pow(10, int(n * n / 9)) - 1)
 
# Driver Code
 
# Given N
N = 4
 
print(smallestNum(N))
 
# This code is contributed by Vishal Maurya.


C#




// C# implementation of the above approach
using System;
 
class GFG{
 
// Function to return smallest
// number whose sum of digits is n^2
static int smallestNum(int n)
{
    return (int)((n * n % 9 + 1) *
         Math.Pow(10, n * n / 9) - 1);
}
 
// Driver Code
public static void Main(String[] args)
{
    int n = 4;
     
    Console.Write(smallestNum(n));
}
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
// Javascript implementation of the above approach
 
    // Function to return smallest
    // number whose sum of digits is n^2
    function smallestNum( n) {
        return parseInt (n * n % 9 + 1) * Math.pow(10, parseInt(n*n / 9)) -1;
    }
 
    // Driver Code
      
        let n = 4;
 
        document.write(smallestNum(n));
     
 
// This code contributed by aashish1995
</script>


Output

10
79

Time complexity: O(log10n2)  for given n, as pow function is being used
Auxiliary space: O(1)


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 22 Sep, 2022
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials