Skip to content
Related Articles

Related Articles

Smallest number whose sum of digits is square of N

View Discussion
Improve Article
Save Article
  • Last Updated : 24 Mar, 2021

Given an integer N, the task is to find the smallest number whose sum of digits is N2.
Examples: 
 

Input: N = 4 
Output: 79 
24 = 16 
sum of digits of 79 = 76
Input: N = 6 
Output: 9999 
210 = 1024 which has 4 digits 
 

 

Approach: The idea is to find the general term for the smallest number whose sum of digits is square of N. That is 
 

// First Few terms 
First Term = 1 // N = 1
Second Term = 4 // N = 2
Third Term = 9 // N = 3
Fourth Term = 79 // N = 4
.
.
Nth Term:

*** QuickLaTeX cannot compile formula:
 

*** Error message:
Error: Nothing to show, formula is empty

 <sup>(n^2 \% 9 + 1) * 10 ^ {\lfloor n^2/9 \rfloor} - 1 </sup>

Below is the implementation of the above approach:
 

C++




// C++ implementation of the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to return smallest
// number whose sum of digits is n^2
int smallestNum(int n)
{
  cout<<pow(10, n * n / 9)<<endl;
    return (n * n % 9 + 1)
               * pow(10, n * n / 9)
           - 1;
}
 
// Driver Code
int main()
{
    int n = 4;
    cout << smallestNum(n);
 
    return 0;
}

Java




// Java implementation of the above approach
import java.util.*;
 
class GFG{
 
// Function to return smallest
// number whose sum of digits is n^2
static int smallestNum(int n)
{
    return (int)((n * n % 9 + 1) *
         Math.pow(10, n * n / 9) - 1);
}
 
// Driver Code
public static void main(String[] args)
{
    int n = 4;
     
    System.out.print(smallestNum(n));
}
}
 
// This code is contributed by Rajput-Ji

Python 3




# Python implementation of the above approach
 
# Function to return smallest
# number whose sum of digits is n^2
def smallestNum(n):
 
    return ((n * n % 9 + 1*
          pow(10, int(n * n / 9)) - 1)
 
# Driver Code
 
# Given N
N = 4
 
print(smallestNum(N))
 
# This code is contributed by Vishal Maurya.

C#




// C# implementation of the above approach
using System;
 
class GFG{
 
// Function to return smallest
// number whose sum of digits is n^2
static int smallestNum(int n)
{
    return (int)((n * n % 9 + 1) *
         Math.Pow(10, n * n / 9) - 1);
}
 
// Driver Code
public static void Main(String[] args)
{
    int n = 4;
     
    Console.Write(smallestNum(n));
}
}
 
// This code is contributed by Rajput-Ji

Javascript




<script>
// Javascript implementation of the above approach
 
    // Function to return smallest
    // number whose sum of digits is n^2
    function smallestNum( n) {
        return parseInt (n * n % 9 + 1) * Math.pow(10, parseInt(n*n / 9)) -1;
    }
 
    // Driver Code
      
        let n = 4;
 
        document.write(smallestNum(n));
     
 
// This code contributed by aashish1995
</script>

Output:

79

My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!