Smallest number whose sum of digits is square of N

Given an integer N, the task is to find the smallest number whose sum of digits is N2.
Examples: 
 

Input: N = 4 
Output: 79 
24 = 16 
sum of digits of 79 = 76
Input: N = 6 
Output: 9999 
210 = 1024 which has 4 digits 
 

 

Approach: The idea is to find the general term for the smallest number whose sum of digits is square of N. That is 
 

// First Few terms 
First Term = 1 // N = 1
Second Term = 4 // N = 2
Third Term = 9 // N = 3
Fourth Term = 79 // N = 4
.
.
Nth Term:

<sup>(n^2 \% 9 + 1) * 10 ^ {\lfloor n^2/9 \rfloor} - 1 </sup>




Below is the implementation of the above approach:
 

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to return smallest
// number whose sum of digits is n^2
int smallestNum(int n)
{
    return (n * n % 9 + 1)
               * pow(10, n * n / 9)
           - 1;
}
 
// Driver Code
int main()
{
    int n = 4;
    cout << smallestNum(n);
 
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the above approach
import java.util.*;
 
class GFG{
 
// Function to return smallest
// number whose sum of digits is n^2
static int smallestNum(int n)
{
    return (int)((n * n % 9 + 1) *
         Math.pow(10, n * n / 9) - 1);
}
 
// Driver Code
public static void main(String[] args)
{
    int n = 4;
     
    System.out.print(smallestNum(n));
}
}
 
// This code is contributed by Rajput-Ji

chevron_right


Python 3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python implementation of the above approach
 
# Function to return smallest
# number whose sum of digits is n^2
def smallestNum(n):
 
    return ((n * n % 9 + 1*
          pow(10, int(n * n / 9)) - 1)
 
# Driver Code
 
# Given N
N = 4
 
print(smallestNum(N))
 
# This code is contributed by Vishal Maurya.

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the above approach
using System;
 
class GFG{
 
// Function to return smallest
// number whose sum of digits is n^2
static int smallestNum(int n)
{
    return (int)((n * n % 9 + 1) *
         Math.Pow(10, n * n / 9) - 1);
}
 
// Driver Code
public static void Main(String[] args)
{
    int n = 4;
     
    Console.Write(smallestNum(n));
}
}
 
// This code is contributed by Rajput-Ji

chevron_right


Output: 
79

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : Rajput-Ji