Related Articles

# Smallest number whose set bits are maximum in a given range

• Difficulty Level : Medium
• Last Updated : 22 Apr, 2021

Given a positive integer ‘l‘ and ‘r‘. Find the smallest number ‘n‘ such that l <= n <= r and count of number of set bits(number of ‘1’s in binary representation) is maximum as possible.

Examples :

```Input: 1 4
Output: 3
Explanation:
Binary representation from '1' to '4':
110 = 0012
210 = 0102
310 = 0112
110 = 1002
Thus number '3' has maximum set bits = 2

Input: 1 10
Output: 7```

Simple approach is to traverse from ‘l’ to ‘r’ and count the set bits for each ‘x'(l <= n <= r) and print the number whose count is maximum among them. Time complexity of this approach is O(n*log(r)).

## C++

 `// C++ program to find number whose set``// bits are maximum among 'l' and 'r'``#include ``using` `namespace` `std;` `// Returns smallest number whose set bits``// are maximum in given range.``int` `countMaxSetBits(``int` `left, ``int` `right)``{``    ``// Initialize the maximum count and``    ``// final answer as 'num'``    ``int` `max_count = -1, num;``    ``for` `(``int` `i = left; i <= right; ++i) {``        ``int` `temp = i, cnt = 0;` `        ``// Traverse for every bit of 'i'``        ``// number``        ``while` `(temp) {``            ``if` `(temp & 1)``                ``++cnt;``            ``temp >>= 1;``        ``}` `        ``// If count is greater than previous``        ``// calculated max_count, update it``        ``if` `(cnt > max_count) {``            ``max_count = cnt;``            ``num = i;``        ``}``    ``}``    ``return` `num;``}` `// Driver code``int` `main()``{``    ``int` `l = 1, r = 5;``    ``cout << countMaxSetBits(l, r) << ``"\n"``;` `    ``l = 1, r = 10;``    ``cout << countMaxSetBits(l, r);``    ``return` `0;``}`

## Java

 `// Java program to find number whose set``// bits are maximum among 'l' and 'r'``class` `gfg``{``    `  `// Returns smallest number whose set bits``// are maximum in given range.``static` `int` `countMaxSetBits(``int` `left, ``int` `right)``{``    ``// Initialize the maximum count and``    ``// final answer as 'num'``    ``int` `max_count = -``1``, num = ``0``;``    ``for` `(``int` `i = left; i <= right; ++i)``    ``{``        ``int` `temp = i, cnt = ``0``;` `        ``// Traverse for every bit of 'i'``        ``// number``        ``while` `(temp > ``0``)``        ``{``            ``if` `(temp % ``2` `== ``1``)``                ``++cnt;``            ``temp >>= ``1``;``        ``}` `        ``// If count is greater than previous``        ``// calculated max_count, update it``        ``if` `(cnt > max_count)``        ``{``            ``max_count = cnt;``            ``num = i;``        ``}``    ``}``    ``return` `num;``}` `// Driver code``public` `static` `void` `main(String[] args)``{``    ``int` `l = ``1``, r = ``5``;``    ``System.out.println(countMaxSetBits(l, r));` `    ``l = ``1``; r = ``10``;``    ``System.out.print(countMaxSetBits(l, r));``}``}` `// This code has been contributed by 29AjayKumar`

## Python3

 `# Python code to find number whose set``# bits are maximum among 'l' and 'r'` `def` `countMaxSetBits( left, right):``    ``max_count ``=` `-``1``    ``for` `i ``in` `range``(left, right``+``1``):``        ``temp ``=` `i``        ``cnt ``=` `0` `        ``# Traverse for every bit of 'i'``        ``# number``        ``while` `temp:``            ``if` `temp & ``1``:``                ``cnt ``+``=``1``            ``temp ``=` `temp >> ``1``        ` `        ``# If count is greater than previous``        ``# calculated max_count, update it``        ``if` `cnt > max_count:``            ``max_count ``=` `cnt``            ``num``=``i``    ``return` `num` `# driver code``l ``=` `1``r ``=` `5``print``(countMaxSetBits(l, r))``l ``=` `1``r ``=` `10``print``(countMaxSetBits(l, r))` `# This code is contributed by "Abhishek Sharma 44"`

## C#

 `// C# program to find number whose set``// bits are maximum among 'l' and 'r'``using` `System;``    ` `class` `gfg``{``    ` `// Returns smallest number whose set bits``// are maximum in given range.``static` `int` `countMaxSetBits(``int` `left, ``int` `right)``{``    ``// Initialize the maximum count and``    ``// final answer as 'num'``    ``int` `max_count = -1, num = 0;``    ``for` `(``int` `i = left; i <= right; ++i)``    ``{``        ``int` `temp = i, cnt = 0;` `        ``// Traverse for every bit of 'i'``        ``// number``        ``while` `(temp > 0)``        ``{``            ``if` `(temp % 2 == 1)``                ``++cnt;``            ``temp >>= 1;``        ``}` `        ``// If count is greater than previous``        ``// calculated max_count, update it``        ``if` `(cnt > max_count)``        ``{``            ``max_count = cnt;``            ``num = i;``        ``}``    ``}``    ``return` `num;``}` `// Driver code``public` `static` `void` `Main(String[] args)``{``    ``int` `l = 1, r = 5;``    ``Console.WriteLine(countMaxSetBits(l, r));` `    ``l = 1; r = 10;``    ``Console.Write(countMaxSetBits(l, r));``}``}` `/* This code contributed by PrinciRaj1992 */`

## PHP

 `>= 1;``        ``}` `        ``// If count is greater than``        ``// previous calculated``        ``// max_count, update it``        ``if` `(``\$cnt` `> ``\$max_count``)``        ``{``            ``\$max_count` `= ``\$cnt``;``            ``\$num` `= ``\$i``;``        ``}``    ``}``    ``return` `\$num``;``}` `// Driver code``\$l` `= 1; ``\$r` `= 5;``echo` `countMaxSetBits(``\$l``, ``\$r``), ``"\n"``;` `\$l` `= 1; ``\$r` `= 10;``echo` `countMaxSetBits(``\$l``, ``\$r``);``    ` `// This code is contributed by m_kit``?>`

## Javascript

 ``

Output :

```3
7```

Efficient approach is to use bit-manipulation. Instead of iterating for every number from ‘l’ to ‘r’, iterate only after updating the desired number(‘num’) i.e., take the bitwise ‘OR’ of number with the consecutive number. For instance,

```Let l = 2, and r = 10
1. num = 2
2. x = num OR (num + 1)
= 2 | 3 = 010 | 011 = 011
num = 3(011)
3. x = 3 | 4 = 011 | 100 = 111
num = 7(111)
4. x = 7 | 8 = 0111 | 1000 = 1111
Since 15(11112) is greater than
10, thus stop traversing for next number.
5. Final answer = 7 ```

## C++

 `// C++ program to find number whose set``// bits are maximum among 'l' and 'r'``#include ``using` `namespace` `std;` `// Returns smallest number whose set bits``// are maximum in given range.``int` `countMaxSetBits(``int` `left, ``int` `right)``{``    ``while` `((left | (left + 1)) <= right)``        ``left |= left + 1;` `    ``return` `left;``}` `// Driver code``int` `main()``{``    ``int` `l = 1, r = 5;``    ``cout << countMaxSetBits(l, r) << ``"\n"``;` `    ``l = 1, r = 10;``    ``cout << countMaxSetBits(l, r) ;``    ``return` `0;``}`

## Java

 `// Java program to find number``// whose set bits are maximum``// among 'l' and 'r'``import` `java.io.*;` `class` `GFG``{``    ` `    ``// Returns smallest number``    ``// whose set bits are``    ``// maximum in given range.``    ``static` `int` `countMaxSetBits(``int` `left,``                               ``int` `right)``    ``{``    ``while` `((left | (left + ``1``)) <= right)``        ``left |= left + ``1``;` `    ``return` `left;``    ``}` `// Driver code``public` `static` `void` `main (String[] args)``{``    ``int` `l = ``1``;``    ``int` `r = ``5``;``    ``System.out.println(countMaxSetBits(l, r));` `    ``l = ``1``;``    ``r = ``10``;``    ``System.out.println(countMaxSetBits(l, r));``}``}` `// This code is contributed by @ajit`

## Python3

 `# Python code to find number whose set``# bits are maximum among 'l' and 'r'` `def` `countMaxSetBits( left, right):``    ` `    ``while``(left | (left``+``1``)) <``=` `right:``        ``left |``=` `left``+``1``    ``return` `left``    ` `# driver code``l ``=` `1``r ``=` `5``print``(countMaxSetBits(l, r))``l ``=` `1``r ``=` `10``print``(countMaxSetBits(l, r))` `# This code is contributed by "Abhishek Sharma 44"`

## C#

 `// C# program to find number``// whose set bits are maximum``// among 'l' and 'r'``using` `System;` `class` `GFG``{``    ` `    ``// Returns smallest number``    ``// whose set bits are``    ``// maximum in given range.``    ``static` `int` `countMaxSetBits(``int` `left,``                               ``int` `right)``    ``{``    ``while` `((left | (left + 1)) <= right)``        ``left |= left + 1;` `    ``return` `left;``    ``}` `// Driver code``static` `public` `void` `Main ()``{``    ``int` `l = 1;``    ``int` `r = 5;``    ``Console.WriteLine(countMaxSetBits(l, r));``    ` `    ``l = 1;``    ``r = 10;``    ``Console.WriteLine(countMaxSetBits(l, r));``}``}` `// This code is contributed by @ajit`

## PHP

 ``

## Javascript

 ``

Output :

```3
7```

Time complexity: O(log(n))
Auxiliary space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

My Personal Notes arrow_drop_up