Skip to content
Related Articles

Related Articles

Smallest number to be added in first Array modulo M to make frequencies of both Arrays equal
  • Last Updated : 01 Oct, 2020

Given two arrays A[] and B[] consisting of N positive integers and a integer M, the task is to find the minimum value of X such that operation (A[i] + X) % M performed on every element of array A[] results in the formation of an array with frequency of elements same as that in another given array B[].

Examples: 

Input: N = 4, M = 3, A[] = {0, 0, 2, 1}, B[] = {2, 0, 1, 1} 
Output:
Explanation: 
Modifying the given array A[] to { (0+1)%3, (0+1)%3, (2+1)%3, (1+1)%3 } 
= { 1%3, 1%3, 3%3, 2%3 }, 
= { 1, 1, 0, 2 }, which is equivalent to B[] in terms of frequency of distinct elements.

Input: N = 5, M = 10, A[] = {0, 0, 0, 1, 2}, B[] = {2, 1, 0, 0, 0} 
Output:
Explanation: 
Frequency of elements in both the arrays are already equal.

Approach: This problem can be solved by using Greedy Approach. Follow the steps below: 



  • There will be at least one possible value of X such that for every index i, ( A[i] + X ) % M = B[0].
  • Find all the possible values of X that convert each element of A[] to the first element of B[].
  • Check whether these possible X values satisfy the other remaining values of B[].
  • If there are multiple answers, take the minimum value of X.

Below is the implementation of the above approach: 

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Utility function to find
// the answer
int moduloEquality(int A[], int B[],
                   int n, int m)
{
 
    // Stores the frequncies of
    // array elements
    map<int, int> mapA, mapB;
 
    for (int i = 0; i < n; i++) {
        mapA[A[i]]++;
        mapB[B[i]]++;
    }
 
    // Stores the possible values
    // of X
    set<int> possibleValues;
 
    int FirstElement = B[0];
    for (int i = 0; i < n; i++) {
        int cur = A[i];
 
        // Generate possible positive
        // values of X
        possibleValues
            .insert(
                cur > FirstElement
                    ? m - cur + FirstElement
                    : FirstElement - cur);
    }
 
    // Initialize answer
    // to MAX value
    int ans = INT_MAX;
 
    for (auto it :
         possibleValues) {
 
        // Flag to check if the
        // current element of the
        // set can be considered
        bool posible = true;
 
        for (auto it2 : mapA) {
 
            // If the frequency of an element
            // in A[] is not equal to that
            // in B[] after the operation
            if (it2.second
                != mapB[(it2.first + it) % m]) {
 
                // Current set element
                // cannot be considered
                posible = false;
                break;
            }
        }
 
        // Update minimum value of X
        if (posible) {
            ans = min(ans, it);
        }
    }
    return ans;
}
 
// Driver Code
int main()
{
    int n = 4;
    int m = 3;
 
    int A[] = { 0, 0, 2, 1 };
    int B[] = { 2, 0, 1, 1 };
 
    cout << moduloEquality(A, B, n, m)
         << endl;
 
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program for the above approach
import java.util.*;
 
class GFG{
 
// Utility function to find
// the answer
static int moduloEquality(int A[], int B[],
                          int n, int m)
{
     
    // Stores the frequncies of
    // array elements
    HashMap<Integer,
            Integer> mapA = new HashMap<Integer,
                                        Integer>();
    HashMap<Integer,
            Integer> mapB = new HashMap<Integer,
                                        Integer>();
 
    for(int i = 0; i < n; i++)
    {
        if (mapA.containsKey(A[i]))
        {
            mapA.put(A[i], mapA.get(A[i]) + 1);
        }
        else
        {
            mapA.put(A[i], 1);
        }
        if (mapB.containsKey(B[i]))
        {
            mapB.put(B[i], mapB.get(B[i]) + 1);
        }
        else
        {
            mapB.put(B[i], 1);
        }
    }
 
    // Stores the possible values
    // of X
    HashSet<Integer> possibleValues = new HashSet<Integer>();
 
    int FirstElement = B[0];
    for(int i = 0; i < n; i++)
    {
        int cur = A[i];
 
        // Generate possible positive
        // values of X
        possibleValues.add(cur > FirstElement ?
                       m - cur + FirstElement :
                  FirstElement - cur);
    }
 
    // Initialize answer
    // to MAX value
    int ans = Integer.MAX_VALUE;
 
    for(int it : possibleValues)
    {
         
        // Flag to check if the
        // current element of the
        // set can be considered
        boolean posible = true;
 
        for(Map.Entry<Integer,
                      Integer> it2 : mapA.entrySet())
        {
             
            // If the frequency of an element
            // in A[] is not equal to that
            // in B[] after the operation
            if (it2.getValue() !=
                mapB.get((it2.getKey() + it) % m))
            {
                 
                // Current set element
                // cannot be considered
                posible = false;
                break;
            }
        }
 
        // Update minimum value of X
        if (posible)
        {
            ans = Math.min(ans, it);
        }
    }
    return ans;
}
 
// Driver Code
public static void main(String[] args)
{
    int n = 4;
    int m = 3;
 
    int A[] = { 0, 0, 2, 1 };
    int B[] = { 2, 0, 1, 1 };
 
    System.out.print(moduloEquality(A, B, n, m) + "\n");
}
}
 
// This code is contributed by Amit Katiyar

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program for the above approach
import sys
from collections import defaultdict
 
# Utility function to find
# the answer
def moduloEquality(A, B, n, m):
 
    # Stores the frequncies of
    # array elements
    mapA = defaultdict(int)
    mapB = defaultdict(int)
 
    for i in range(n):
        mapA[A[i]] += 1
        mapB[B[i]] += 1
 
    # Stores the possible values
    # of X
    possibleValues = set()
 
    FirstElement = B[0]
    for i in range(n):
        cur = A[i]
 
        # Generate possible positive
        # values of X
        if cur > FirstElement:
            possibleValues.add(m - cur + FirstElement)
        else:
            possibleValues.add(FirstElement - cur)
 
    # Initialize answer
    # to MAX value
    ans = sys.maxsize
 
    for it in possibleValues:
 
        # Flag to check if the
        # current element of the
        # set can be considered
        posible = True
 
        for it2 in mapA:
 
            # If the frequency of an element
            # in A[] is not equal to that
            # in B[] after the operation
            if (mapA[it2] !=
                mapB[(it2 + it) % m]):
 
                # Current set element
                # cannot be considered
                posible = False
                break
 
        # Update minimum value of X
        if (posible):
            ans = min(ans, it)
             
    return ans
 
# Driver Code
if __name__ == "__main__":
     
    n = 4
    m = 3
 
    A = [ 0, 0, 2, 1 ]
    B = [ 2, 0, 1, 1 ]
 
    print(moduloEquality(A, B, n, m))
 
# This code is contributed by chitranayal

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program for the above approach
using System;
using System.Collections.Generic;
 
class GFG{
     
// Utility function to find
// the answer
static int moduloEquality(int[] A, int[] B,
                          int n, int m)
{
     
    // Stores the frequncies of
    // array elements
    Dictionary<int,
               int> mapA = new Dictionary<int,
                                          int>();
                    
    Dictionary<int,
               int> mapB = new Dictionary<int,
                                          int>();
  
    for(int i = 0; i < n; i++)
    {
        if (mapA.ContainsKey(A[i]))
        {
            mapA[A[i]] = mapA[A[i]] + 1;
        }
        else
        {
            mapA.Add(A[i], 1);
        }
        if (mapB.ContainsKey(B[i]))
        {
            mapB[B[i]] = mapB[B[i]] + 1;
        }
        else
        {
            mapB.Add(B[i], 1);
        }
    }
  
    // Stores the possible values
    // of X
    HashSet<int> possibleValues = new HashSet<int>();
  
    int FirstElement = B[0];
    for(int i = 0; i < n; i++)
    {
        int cur = A[i];
  
        // Generate possible positive
        // values of X
        possibleValues.Add(cur > FirstElement ?
                       m - cur + FirstElement :
                  FirstElement - cur);
    }
  
    // Initialize answer
    // to MAX value
    int ans = Int32.MaxValue;
    
    foreach(int it in possibleValues)
    {
          
        // Flag to check if the
        // current element of the
        // set can be considered
        bool posible = true;
         
        foreach(KeyValuePair<int, int> it2 in mapA)
        {
              
            // If the frequency of an element
            // in A[] is not equal to that
            // in B[] after the operation
            if (it2.Value != mapB[(it2.Key + it) % m])
            {
                  
                // Current set element
                // cannot be considered
                posible = false;
                break;
            }
        }
  
        // Update minimum value of X
        if (posible)
        {
            ans = Math.Min(ans, it);
        }
    }
    return ans;
}
 
// Driver code
static void Main()
{
    int n = 4;
    int m = 3;
  
    int[] A = { 0, 0, 2, 1 };
    int[] B = { 2, 0, 1, 1 };
   
    Console.WriteLine(moduloEquality(A, B, n, m));
}
}
 
// This code is contributed by divyeshrabadiya07

chevron_right


Output: 

1




 

Time Complexity: O(N2
Auxiliary Space: O(N)
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up
Recommended Articles
Page :