Smallest number greater than n that can be represented as a sum of distinct power of k

Given a number n and a value k, the task is to find the smallest m(m>=n), such that m can be represented as a sum of distinct powers of k.
Examples: 

Input: n = 5, k = 5 
Output:
Explanation: 5 = 51

Input: n = 29, k = 5 
Output: 30 
Explanation: 30 = 51 + 52 

Approach: 

  1. Store the k-nary(base k) representation of n. Then traverse through each element of the base k representation.
  2. If the base k representation of this position is 1 or 0 then continue, if it is >1; it means that the current power of k occurs more than once.
  3. In that case, that power is added k (k’s-position value) times which makes it one power more (((k-1)+1).kx = k.kx = kx+1).
  4. Since the smallest number has to be found, after this step, all the lower powers of k is reduced to 0 as adding(k-b)kx (b=value at that position in base k representation) has already made the number bigger than the previous number.
  5. Finally, convert the number back to decimal form.

Below is the implementation of the above approach

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the above approach
#include <bits/stdc++.h>
using namespace std;
 
typedef long long ll;
#define pb push_back
 
// Function to find the smallest number
// greater than or equal to n represented
// as the sum of distinct powers of k
void greaterK(ll n, ll k)
{
 
    // Vector P to store the base k
    // representation of the number
    vector<ll> p;
    ll x = n;
    while (x) {
        p.pb(x % k);
        x /= k;
    }
    int idx = 0;
    for (ll i = 0; i < (ll)p.size() - 1; ++i) {
        if (p[i] >= 2) {
 
            // If the representation is >=2, then
            // this power of k has to be added
            // once again and then increase the
            // next power of k and make the
            // current power 0
 
            p[i] = 0;
            p[i + 1]++;
 
            // Reduce all the lower power of
            // k to 0
 
            for (int j = idx; j < i; ++j) {
                p[j] = 0;
            }
            idx = i + 1;
        }
 
        if (p[i] == k) {
            p[i] = 0;
            p[i + 1]++;
        }
    }
    ll j = (ll)p.size() - 1;
 
    // Check if the most significant
    // bit also satisfy the above
    // conditions
 
    if (p[j] >= 2) {
        for (auto& i : p)
            i = 0;
        p.pb(1);
    }
    ll ans = 0;
 
    // Converting back from the
    // k-nary representation to
    // decimal form.
    for (ll i = p.size() - 1; i >= 0; --i) {
        ans = ans * k + p[i];
    }
    cout << ans << endl;
}
 
int main()
{
    ll n = 29, k = 7;
    greaterK(n, k);
    return 0;
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the above approach
class GFG{
 
// Function to find the smallest number
// greater than or equal to n represented
// as the sum of distinct powers of k
static void greaterK(int n, int k)
{
 
    // Vector P to store the base k
    // representation of the number
    int []p = new int[String.valueOf(n).length() + 2];
    int index = 0;
    int x = n;
    while (x > 0)
    {
        p[index]=(int) (x % k);
        x /= k;
        index++;
    }
    int idx = 0;
    for (int i = 0; i < p.length - 1; ++i)
    {
        if (p[i] >= 2)
        {
 
            // If the representation is >=2, then
            // this power of k has to be added
            // once again and then increase the
            // next power of k and make the
            // current power 0
            p[i] = 0;
            p[i + 1]++;
 
            // Reduce all the lower power of
            // k to 0
            for (int j = idx; j < i; ++j)
            {
                p[j] = 0;
            }
            idx = i + 1;
        }
 
        if (p[i] == k)
        {
            p[i] = 0;
            p[i + 1]++;
        }
    }
    int j = p.length - 1;
 
    // Check if the most significant
    // bit also satisfy the above
    // conditions
    if (p[j] >= 2)
    {
        p[index] = 1;
        index++;
    }
    int ans = 0;
 
    // Converting back from the
    // k-nary representation to
    // decimal form.
    for (int i = p.length - 1; i >= 0; --i)
    {
        ans = ans * k + p[i];
    }
    System.out.print(ans +"\n");
}
 
// Driver code
public static void main(String[] args)
{
    int n = 29, k = 7;
    greaterK(n, k);
}
}
 
// This code is contributed by 29AjayKumar
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the above approach
 
# Function to find the smallest number
# greater than or equal to n represented
# as the sum of distinct powers of k
def greaterK(n, k):
     
    # Vector P to store the base k
    # representation of the number
    index = 0
    p = [0 for i in range(n + 2)]
    x = n
    while (x > 0):
        p[index] = x % k
        x //= k
        index += 1
 
    idx = 0
    for i in range(0,len(p)-1, 1):
        if (p[i] >= 2):
             
            # If the representation is >=2, then
            # this power of k has to be added
            # once again and then increase the
            # next power of k and make the
            # current power 0
            p[i] = 0
            p[i + 1] += 1
 
            # Reduce all the lower power of
            # k to 0
            for j in range(idx, i, 1):
                p[j] = 0
             
            idx = i + 1
 
        if (p[i] == k):
            p[i] = 0
            p[i + 1] += 1
         
    j = len(p) - 1
 
    # Check if the most significant
    # bit also satisfy the above
    # conditions
    if (p[j] >= 2):
        p[index] = 1
        index += 1
    ans = 0
 
    # Converting back from the
    # k-nary representation to
    # decimal form.
    i = len(p)-1
    while(i>= 0):
        ans = ans * k + p[i]
        i -= 1
    print(ans)
 
if __name__ == '__main__':
    n = 29
    k = 7
    greaterK(n, k)
 
# This code is contributed by Surendra_Gangwar
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the above approach
using System;
 
class GFG{
 
// Function to find the smallest number
// greater than or equal to n represented
// as the sum of distinct powers of k
static void greaterK(int n, int k)
{
 
    // List P to store the base k
    // representation of the number
    int []p = new int[String.Join("",n).Length + 2];
    int index = 0;
    int x = n;
    int j;
    while (x > 0)
    {
        p[index] = (int) (x % k);
        x /= k;
        index++;
    }
    int idx = 0;
    for (int i = 0; i < p.Length - 1; ++i)
    {
        if (p[i] >= 2)
        {
 
            // If the representation is >=2, then
            // this power of k has to be added
            // once again and then increase the
            // next power of k and make the
            // current power 0
            p[i] = 0;
            p[i + 1]++;
 
            // Reduce all the lower power of
            // k to 0
            for (j = idx; j < i; ++j)
            {
                p[j] = 0;
            }
            idx = i + 1;
        }
 
        if (p[i] == k)
        {
            p[i] = 0;
            p[i + 1]++;
        }
    }
    j = p.Length - 1;
 
    // Check if the most significant
    // bit also satisfy the above
    // conditions
    if (p[j] >= 2)
    {
        p[index] = 1;
        index++;
    }
    int ans = 0;
 
    // Converting back from the
    // k-nary representation to
    // decimal form.
    for (int i = p.Length - 1; i >= 0; --i)
    {
        ans = ans * k + p[i];
    }
    Console.Write(ans +"\n");
}
 
// Driver code
public static void Main(String[] args)
{
    int n = 29, k = 7;
    greaterK(n, k);
}
}
 
// This code is contributed by PrinciRaj1992
chevron_right

Output: 
49





 





Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Article Tags :