Skip to content
Related Articles

Related Articles

Improve Article

Smallest number dividing minimum number of elements in the array | Set 2

  • Last Updated : 13 May, 2021

Given an array arr[] of N integers, the task is to find the smallest number that divides the minimum number of elements from the array.
Examples: 
 

Input: arr[] = {2, 12, 6} 
Output:
Here, 1 divides 3 elements 
2 divides 3 elements 
3 divides 2 elements 
4 divides 1 element 
5 divides no element 
6 divides 2 elements 
7 divides no element 
8 divides no element 
9 divides no element 
10 divides no element 
11 divides no element 
12 divides 1 element 
5 is the smallest number not dividing any 
number in the array. Thus, ans = 5
Input: arr[] = {1, 7, 9} 
Output:
 

Approach: Let’s observe some details first. A number that divides zero elements already exists i.e. max(arr) + 1. Now, we just need to find the minimum number which divides zero numbers in the array.
In this article, an approach to solving this problem in O(M*log(M) + N) time using a sieve (M = max(arr)) will be discussed. 
 

  • First, find the maximum element, M, in the array and create a frequency table freq[] of length M + 1 to store the frequency of the numbers between 1 to M.
  • Iterate the array and update freq[] as freq[arr[i]]++ for each index i.
  • Now, apply the sieve algorithm. Iterate between all the elements between 1 to M + 1
    • Let’s say we are iterating for a number X.
    • Create a temporary variable cnt.
    • For each multiple of X between X and M {X, 2X, 3X ….} update cnt as cnt = cnt + freq[kX].
    • If cnt = 0 then the answer will be X else continue iterating for the next value of X.

Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the smallest number
// that divides minimum number of elements
// in the given array
int findMin(int* arr, int n)
{
    // m stores the maximum in the array
    int m = 0;
    for (int i = 0; i < n; i++)
        m = max(m, arr[i]);
 
    // Frequency array
    int freq[m + 2] = { 0 };
    for (int i = 0; i < n; i++)
        freq[arr[i]]++;
 
    // Sieve
    for (int i = 1; i <= m + 1; i++) {
        int j = i;
        int cnt = 0;
         
        // Incrementing j
        while (j <= m) {
            cnt += freq[j];
            j += i;
        }
 
        // If no multiples of j are
        // in the array
        if (!cnt)
            return i;
    }
 
    return m + 1;
}
 
// Driver code
int main()
{
    int arr[] = { 2, 12, 6 };
    int n = sizeof(arr) / sizeof(int);
 
    cout << findMin(arr, n);
     
    return 0;
}

Java




// Java implementation of the approach
class GFG
{
     
    // Function to return the smallest number
    // that divides minimum number of elements
    // in the given array
    static int findMin(int arr[], int n)
    {
        // m stores the maximum in the array
        int m = 0;
        for (int i = 0; i < n; i++)
            m = Math.max(m, arr[i]);
     
        // Frequency array
        int freq [] = new int[m + 2];
        for (int i = 0; i < n; i++)
            freq[arr[i]]++;
     
        // Sieve
        for (int i = 1; i <= m + 1; i++)
        {
            int j = i;
            int cnt = 0;
             
            // Incrementing j
            while (j <= m)
            {
                cnt += freq[j];
                j += i;
            }
     
            // If no multiples of j are
            // in the array
            if (cnt == 0)
                return i;
        }
        return m + 1;
    }
     
    // Driver code
    public static void main (String[] args)
    {
        int arr[] = { 2, 12, 6 };
        int n = arr.length;
     
        System.out.println(findMin(arr, n));
    }
}
 
// This code is contributed by AnkitRai01

Python3




# Python3 implementation of the approach
 
# Function to return the smallest number
# that divides minimum number of elements
# in the given array
def findMin(arr, n):
     
    # m stores the maximum in the array
    m = 0
    for i in range(n):
        m = max(m, arr[i])
 
    # Frequency array
    freq = [0] * (m + 2)
    for i in range(n):
        freq[arr[i]] += 1
 
    # Sieve
    for i in range(1, m + 2):
        j = i
        cnt = 0
 
        # Incrementing j
        while (j <= m):
            cnt += freq[j]
            j += i
 
        # If no multiples of j are
        # in the array
        if (not cnt):
            return i
 
    return m + 1
 
# Driver code
arr = [2, 12, 6]
n = len(arr)
 
print(findMin(arr, n))
 
# This code is contributed by Mohit Kumar

C#




// C# implementation of the approach
using System;
 
class GFG
{
     
    // Function to return the smallest number
    // that divides minimum number of elements
    // in the given array
    static int findMin(int []arr, int n)
    {
        // m stores the maximum in the array
        int m = 0;
        for (int i = 0; i < n; i++)
            m = Math.Max(m, arr[i]);
     
        // Frequency array
        int []freq = new int[m + 2];
        for (int i = 0; i < n; i++)
            freq[arr[i]]++;
     
        // Sieve
        for (int i = 1; i <= m + 1; i++)
        {
            int j = i;
            int cnt = 0;
             
            // Incrementing j
            while (j <= m)
            {
                cnt += freq[j];
                j += i;
            }
     
            // If no multiples of j are
            // in the array
            if (cnt == 0)
                return i;
        }
        return m + 1;
    }
     
    // Driver code
    public static void Main ()
    {
        int []arr = { 2, 12, 6 };
        int n = arr.Length;
     
        Console.WriteLine(findMin(arr, n));
    }
}
 
// This code is contributed by AnkitRai01

Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to return the smallest number
// that divides minimum number of elements
// in the given array
function findMin(arr, n)
{
    // m stores the maximum in the array
    var m = 0;
    for (var i = 0; i < n; i++)
        m = Math.max(m, arr[i]);
 
    // Frequency array
    var freq = Array(m+2).fill(0);
    for (var i = 0; i < n; i++)
        freq[arr[i]]++;
 
    // Sieve
    for (var i = 1; i <= m + 1; i++) {
        var j = i;
        var cnt = 0;
         
        // Incrementing j
        while (j <= m) {
            cnt += freq[j];
            j += i;
        }
 
        // If no multiples of j are
        // in the array
        if (!cnt)
            return i;
    }
 
    return m + 1;
}
 
// Driver code
var arr = [2, 12, 6];
var n = arr.length;
document.write( findMin(arr, n));
 
</script>

Output:  



5

Time Complexity: O(Mlog(M) + N)
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :