Smallest N digit number divisible by all possible prime digits

Given an integer N, the task is to find the smallest N digit number divisible by all possible prime digits, i.e, 2, 3, 5 and 7. Print -1 if no such number is possible.
Examples: 

Input: N = 5 
Output: 10080 
Explanation: 10080 is the smallest five-digit number that is divisible by 2, 3, 5 and 7.

Input: N = 3 
Output: 210

Approach: 
Follow the steps given below to solve the problem: 

  • Since all the four numbers 2, 3, 5, 7 are prime it means N will also be divisible by their product 2 × 3 × 5 × 7 = 210
  • For N < 3, no such number exists. So, print -1.
  • For N = 3, the answer will be 210.
  • For N > 3, the following computation needs to be done: 
    • Find Remainder R = 10N-1 % N.
    • Add 210 – R to 10N-1.

Below is the implementation of the above approach:



C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the above approach  
#include <bits/stdc++.h>
using namespace std;
  
// Function to find the minimum number of  
// n digits divisible by all prime digits 
void minNum(int n)
{
    if (n < 3)
        cout << -1;
    else
        cout << (210 * ((int)(pow(10, n - 1) /
                                   210) + 1));
}
  
// Driver Code
int main()
{
    int n = 5;
    minNum(n);
    return 0;
}
  
// This code is contributed by amal kumar choubey

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the above approach
class GFG{
      
// Function to find the minimum number of 
// n digits divisible by all prime digits
static void minNum(int n)
{
    if(n < 3)
        System.out.println(-1);
    else
        System.out.println(210 * (
            (int)(Math.pow(10, n - 1) / 210) + 1));
}
  
// Driver code
public static void main(String[] args) 
{
    int n = 5;
    minNum(n);
}
}
  
// This code is contributed by Stuti Pathak

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the above approach 
from math import *
   
# Function to find the minimum number of 
# n digits divisible by all prime digits.
def minNum(n): 
    if n < 3:
        print(-1)
    else:
        print(210 * (10**(n-1) // 210 + 1))
   
# Driver Code 
n = 5
minNum(n)

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the above approach
using System;
  
class GFG{
  
// Function to find the minimum number of
// n digits divisible by all prime digits
static void minNum(int n)
{
    if (n < 3)
        Console.WriteLine(-1);
    else
        Console.WriteLine(210 * 
           ((int)(Math.Pow(10, n - 1) / 210) + 1));
}
  
// Driver code
public static void Main(String[] args)
{
    int n = 5;
    minNum(n);
}
}
  
// This code is contributed by amal kumar choubey

chevron_right


Output: 

10080

Time complexity: O(logN) 
Auxiliary Space: O(1) 
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Article Tags :
Practice Tags :


2


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.