Open In App
Related Articles

Smallest integer having at least K prime divisors with difference between each factor at least D

Improve Article
Improve
Save Article
Save
Like Article
Like

Given two integers D and K. The task is to find the smallest number N which has at least K prime divisors and the difference between each pair of divisors is at least D

Examples

Input: D = 3, K = 2
Output: 55
Explanation: It is smallest number which has 4 divisors 1 and 2 prime divisors  5, 11 and their difference between any of the pair is D.

Input: D = 1, K = 4
Output: 210
Explanation: It is the smallest number which has 5 divisors 1 and 4 prime divisors 2, 3, 5, 7, and their difference between any of the pair is D.

 

Approach: This problem can be solved by using the Sieve of Eratosthenes Follow the steps below to solve the given problem.

  • Make a sieve of Eratosthenes.
  • Initialize a variable firstDivisor and store D + 1.
  • Iterate firstDivisor by 1 until it becomes prime.
  • Initialize SmallestNumber = FirstDivisor + D.
  • Now iterate the loop and increment SmallestNumber until we get K -1 primes.
  • And, the product with all divisors and return the product.

Below is the implementation of the above approach.

C++




// C++ program for above approach
#include <bits/stdc++.h>
using namespace std;
const int N = 1000000;
 
// Function of Sieve of Eratosthenes
void SieveOfEratosthenes(vector<bool>& prime)
{
    for (int p = 2; p * p <= N; p++) {
        if (prime[p] == true) {
            for (int i = p * p; i <= N; i += p)
                prime[i] = false;
        }
    }
}
 
// Function to find smallest
// number with given conditions
int SmallestNumber(vector<bool> prime,
                   int D, int K)
{
 
    // Initialize first with D + 1
    // because 1 is also a divisor
    int FirstDivisor = D + 1;
 
    while (FirstDivisor < N
           and !prime[FirstDivisor]) {
        ++FirstDivisor;
    }
 
    // Now value of K is decrement by 1
    K--;
 
    // Initialize Divisor with First + D
    // to maintain a difference D
    // We get Remaining divisor
    int SmallestNumber = FirstDivisor;
    int Divisor = FirstDivisor + D;
 
    // Maintain previous divisor
    // to maintain difference
    int prevDivisor = FirstDivisor;
    while (K > 0 and SmallestNumber < N) {
        if (prime[Divisor]
            and Divisor - D >= prevDivisor) {
            SmallestNumber *= Divisor;
            prevDivisor = Divisor;
            K--;
        }
        Divisor++;
    }
 
    // Return the final answer
    return SmallestNumber;
}
 
// Driver Code
int main()
{
    vector<bool> prime(N, true);
 
    SieveOfEratosthenes(prime);
 
    int D = 1;
    int K = 4;
 
    // Function Call
    cout << SmallestNumber(prime, D, K);
 
    return 0;
}


Java




// Java program to implement
// the above approach
import java.util.*;
 
class GFG
{
 
static int N = 1000000;
 
// Function of Sieve of Eratosthenes
static void SieveOfEratosthenes(boolean[] prime)
{
    for (int p = 2; p * p < N; p++) {
        if (prime[p] == true) {
            for (int i = p * p; i < N; i += p)
                prime[i] = false;
        }
    }
}
 
// Function to find smallest
// number with given conditions
static int SmallestNumber(boolean[] prime,
                   int D, int K)
{
 
    // Initialize first with D + 1
    // because 1 is also a divisor
    int FirstDivisor = D + 1;
 
    while (FirstDivisor < N
           && !prime[FirstDivisor]) {
        ++FirstDivisor;
    }
 
    // Now value of K is decrement by 1
    K--;
 
    // Initialize Divisor with First + D
    // to maintain a difference D
    // We get Remaining divisor
    int SmallestNumber = FirstDivisor;
    int Divisor = FirstDivisor + D;
 
    // Maintain previous divisor
    // to maintain difference
    int prevDivisor = FirstDivisor;
    while (K > 0 && SmallestNumber < N) {
        if (prime[Divisor]
            && Divisor - D >= prevDivisor) {
            SmallestNumber *= Divisor;
            prevDivisor = Divisor;
            K--;
        }
        Divisor++;
    }
 
    // Return the final answer
    return SmallestNumber;
}
 
// Driver Code
public static void main(String args[])
{
    boolean[] prime = new boolean[N];
    Arrays.fill(prime, true);
 
    SieveOfEratosthenes(prime);
 
    int D = 1;
    int K = 4;
 
    // Function Call
    System.out.println(SmallestNumber(prime, D, K));
}
}
 
// This code is contributed by sanjoy_62.


Python3




# Python program to implement
# the above approach
N = 1000000;
 
# Function of Sieve of Eratosthenes
def SieveOfEratosthenes(prime):
    for p in range(2, N//2):
        if (prime[p] == True):
            for i in range(p*p,N,p):
                prime[i] = False;
         
# Function to find smallest
# number with given conditions
def SmallestNumber(prime, D, K):
 
    # Initialize first with D + 1
    # because 1 is also a divisor
    FirstDivisor = D + 1;
 
    while (FirstDivisor < N and prime[FirstDivisor]!=True):
        FirstDivisor += 1;
     
    # Now value of K is decrement by 1
    K -= 1;
 
    # Initialize Divisor with First + D
    # to maintain a difference D
    # We get Remaining divisor
    SmallestNumber = FirstDivisor;
    Divisor = FirstDivisor + D;
 
    # Maintain previous divisor
    # to maintain difference
    prevDivisor = FirstDivisor;
    while (K > 0 and SmallestNumber < N):
        if (prime[Divisor] and Divisor - D >= prevDivisor):
            SmallestNumber *= Divisor;
            prevDivisor = Divisor;
            K -= 1;
         
        Divisor += 1;
 
    # Return the final answer
    return SmallestNumber;
 
# Driver Code
if __name__ == '__main__':
    prime = [True for i in range(N)];
     
    SieveOfEratosthenes(prime);
 
    D = 1;
    K = 4;
 
    # Function Call
    print(SmallestNumber(prime, D, K));
 
# This code is contributed by Rajput-Ji


C#




// C# program to implement
// the above approach
using System;
 
public class GFG
{
 
  static int N = 1000000;
 
  // Function of Sieve of Eratosthenes
  static void SieveOfEratosthenes(bool[] prime)
  {
    for (int p = 2; p * p < N; p++) {
      if (prime[p] == true) {
        for (int i = p * p; i < N; i += p)
          prime[i] = false;
      }
    }
  }
 
  // Function to find smallest
  // number with given conditions
  static int SmallestNumber(bool[] prime,
                            int D, int K)
  {
 
    // Initialize first with D + 1
    // because 1 is also a divisor
    int FirstDivisor = D + 1;
 
    while (FirstDivisor < N
           && !prime[FirstDivisor]) {
      ++FirstDivisor;
    }
 
    // Now value of K is decrement by 1
    K--;
 
    // Initialize Divisor with First + D
    // to maintain a difference D
    // We get Remaining divisor
    int SmallestNumber = FirstDivisor;
    int Divisor = FirstDivisor + D;
 
    // Maintain previous divisor
    // to maintain difference
    int prevDivisor = FirstDivisor;
    while (K > 0 && SmallestNumber < N) {
      if (prime[Divisor]
          && Divisor - D >= prevDivisor) {
        SmallestNumber *= Divisor;
        prevDivisor = Divisor;
        K--;
      }
      Divisor++;
    }
 
    // Return the readonly answer
    return SmallestNumber;
  }
 
  // Driver Code
  public static void Main(String []args)
  {
    bool[] prime = new bool[N];
    for(int i = 0;i<N;i++)
      prime[i] = true;
 
    SieveOfEratosthenes(prime);
 
    int D = 1;
    int K = 4;
 
    // Function Call
    Console.WriteLine(SmallestNumber(prime, D, K));
  }
}
 
// This code is contributed by Rajput-Ji


Javascript




<script>
        // JavaScript code for the above approach
 
        let N = 1000000;
 
        // Function of Sieve of Eratosthenes
        function SieveOfEratosthenes(prime) {
            for (let p = 2; p * p <= N; p++) {
                if (prime[p] == true) {
                    for (let i = p * p; i <= N; i += p)
                        prime[i] = false;
                }
            }
        }
 
        // Function to find smallest
        // number with given conditions
        function SmallestNumber(prime,
            D, K) {
 
            // Initialize first with D + 1
            // because 1 is also a divisor
            let FirstDivisor = D + 1;
 
            while (FirstDivisor < N
                && !prime[FirstDivisor]) {
                ++FirstDivisor;
            }
 
            // Now value of K is decrement by 1
            K--;
 
            // Initialize Divisor with First + D
            // to maintain a difference D
            // We get Remaining divisor
            let SmallestNumber = FirstDivisor;
            let Divisor = FirstDivisor + D;
 
            // Maintain previous divisor
            // to maintain difference
            let prevDivisor = FirstDivisor;
            while (K > 0 && SmallestNumber < N) {
                if (prime[Divisor]
                    && Divisor - D >= prevDivisor) {
                    SmallestNumber *= Divisor;
                    prevDivisor = Divisor;
                    K--;
                }
                Divisor++;
            }
 
            // Return the final answer
            return SmallestNumber;
        }
 
        // Driver Code
        let prime = new Array(N).fill(true);
 
        SieveOfEratosthenes(prime);
 
        let D = 1;
        let K = 4;
 
        // Function Call
        document.write(SmallestNumber(prime, D, K))
 
       // This code is contributed by Potta Lokesh
    </script>


Output

210

Time Complexity: O(N*log(log(N))) 
Auxiliary Space: O(N)


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 22 Feb, 2023
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials