Given two integers D and K. The task is to find the smallest number N which has at least K prime divisors and the difference between each pair of divisors is at least D.
Examples
Input: D = 3, K = 2
Output: 55
Explanation: It is smallest number which has 4 divisors 1 and 2 prime divisors 5, 11 and their difference between any of the pair is D.
Input: D = 1, K = 4
Output: 210
Explanation: It is the smallest number which has 5 divisors 1 and 4 prime divisors 2, 3, 5, 7, and their difference between any of the pair is D.
Approach: This problem can be solved by using the Sieve of Eratosthenes Follow the steps below to solve the given problem.
- Make a sieve of Eratosthenes.
- Initialize a variable firstDivisor and store D + 1.
- Iterate firstDivisor by 1 until it becomes prime.
- Initialize SmallestNumber = FirstDivisor + D.
- Now iterate the loop and increment SmallestNumber until we get K -1 primes.
- And, the product with all divisors and return the product.
Below is the implementation of the above approach.
C++
#include <bits/stdc++.h>
using namespace std;
const int N = 1000000;
void SieveOfEratosthenes(vector< bool >& prime)
{
for ( int p = 2; p * p <= N; p++) {
if (prime[p] == true ) {
for ( int i = p * p; i <= N; i += p)
prime[i] = false ;
}
}
}
int SmallestNumber(vector< bool > prime,
int D, int K)
{
int FirstDivisor = D + 1;
while (FirstDivisor < N
and !prime[FirstDivisor]) {
++FirstDivisor;
}
K--;
int SmallestNumber = FirstDivisor;
int Divisor = FirstDivisor + D;
int prevDivisor = FirstDivisor;
while (K > 0 and SmallestNumber < N) {
if (prime[Divisor]
and Divisor - D >= prevDivisor) {
SmallestNumber *= Divisor;
prevDivisor = Divisor;
K--;
}
Divisor++;
}
return SmallestNumber;
}
int main()
{
vector< bool > prime(N, true );
SieveOfEratosthenes(prime);
int D = 1;
int K = 4;
cout << SmallestNumber(prime, D, K);
return 0;
}
|
Java
import java.util.*;
class GFG
{
static int N = 1000000 ;
static void SieveOfEratosthenes( boolean [] prime)
{
for ( int p = 2 ; p * p < N; p++) {
if (prime[p] == true ) {
for ( int i = p * p; i < N; i += p)
prime[i] = false ;
}
}
}
static int SmallestNumber( boolean [] prime,
int D, int K)
{
int FirstDivisor = D + 1 ;
while (FirstDivisor < N
&& !prime[FirstDivisor]) {
++FirstDivisor;
}
K--;
int SmallestNumber = FirstDivisor;
int Divisor = FirstDivisor + D;
int prevDivisor = FirstDivisor;
while (K > 0 && SmallestNumber < N) {
if (prime[Divisor]
&& Divisor - D >= prevDivisor) {
SmallestNumber *= Divisor;
prevDivisor = Divisor;
K--;
}
Divisor++;
}
return SmallestNumber;
}
public static void main(String args[])
{
boolean [] prime = new boolean [N];
Arrays.fill(prime, true );
SieveOfEratosthenes(prime);
int D = 1 ;
int K = 4 ;
System.out.println(SmallestNumber(prime, D, K));
}
}
|
Python3
N = 1000000 ;
def SieveOfEratosthenes(prime):
for p in range ( 2 , N / / 2 ):
if (prime[p] = = True ):
for i in range (p * p,N,p):
prime[i] = False ;
def SmallestNumber(prime, D, K):
FirstDivisor = D + 1 ;
while (FirstDivisor < N and prime[FirstDivisor]! = True ):
FirstDivisor + = 1 ;
K - = 1 ;
SmallestNumber = FirstDivisor;
Divisor = FirstDivisor + D;
prevDivisor = FirstDivisor;
while (K > 0 and SmallestNumber < N):
if (prime[Divisor] and Divisor - D > = prevDivisor):
SmallestNumber * = Divisor;
prevDivisor = Divisor;
K - = 1 ;
Divisor + = 1 ;
return SmallestNumber;
if __name__ = = '__main__' :
prime = [ True for i in range (N)];
SieveOfEratosthenes(prime);
D = 1 ;
K = 4 ;
print (SmallestNumber(prime, D, K));
|
C#
using System;
public class GFG
{
static int N = 1000000;
static void SieveOfEratosthenes( bool [] prime)
{
for ( int p = 2; p * p < N; p++) {
if (prime[p] == true ) {
for ( int i = p * p; i < N; i += p)
prime[i] = false ;
}
}
}
static int SmallestNumber( bool [] prime,
int D, int K)
{
int FirstDivisor = D + 1;
while (FirstDivisor < N
&& !prime[FirstDivisor]) {
++FirstDivisor;
}
K--;
int SmallestNumber = FirstDivisor;
int Divisor = FirstDivisor + D;
int prevDivisor = FirstDivisor;
while (K > 0 && SmallestNumber < N) {
if (prime[Divisor]
&& Divisor - D >= prevDivisor) {
SmallestNumber *= Divisor;
prevDivisor = Divisor;
K--;
}
Divisor++;
}
return SmallestNumber;
}
public static void Main(String []args)
{
bool [] prime = new bool [N];
for ( int i = 0;i<N;i++)
prime[i] = true ;
SieveOfEratosthenes(prime);
int D = 1;
int K = 4;
Console.WriteLine(SmallestNumber(prime, D, K));
}
}
|
Javascript
<script>
let N = 1000000;
function SieveOfEratosthenes(prime) {
for (let p = 2; p * p <= N; p++) {
if (prime[p] == true ) {
for (let i = p * p; i <= N; i += p)
prime[i] = false ;
}
}
}
function SmallestNumber(prime,
D, K) {
let FirstDivisor = D + 1;
while (FirstDivisor < N
&& !prime[FirstDivisor]) {
++FirstDivisor;
}
K--;
let SmallestNumber = FirstDivisor;
let Divisor = FirstDivisor + D;
let prevDivisor = FirstDivisor;
while (K > 0 && SmallestNumber < N) {
if (prime[Divisor]
&& Divisor - D >= prevDivisor) {
SmallestNumber *= Divisor;
prevDivisor = Divisor;
K--;
}
Divisor++;
}
return SmallestNumber;
}
let prime = new Array(N).fill( true );
SieveOfEratosthenes(prime);
let D = 1;
let K = 4;
document.write(SmallestNumber(prime, D, K))
</script>
|
Time Complexity: O(N*log(log(N)))
Auxiliary Space: O(N)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
22 Feb, 2023
Like Article
Save Article