Smallest and Largest sum of two n-digit numbers

Given an integer N ≥ 1, the task is to find the smallest and the largest sum of two N digit numbers.

Examples:

Input: N = 1
Output:
Largest = 18
Smallest = 0
Largest 1-digit number is 9 and 9 + 9 = 18
Smallest 1-digit number is 0 and 0 + 0 = 0



Input: N = 2
Output:
Largest = 198
Smallest = 20

Approach:

Below is the implementation of the above approach:

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to return the smallest sum
// of 2 n-digit numbers
int smallestSum(int n)
{
    if (n == 1)
        return 0;
    return (2 * pow(10, n - 1));
}
  
// Function to return the largest sum
// of 2 n-digit numbers
int largestSum(int n)
{
    return (2 * (pow(10, n) - 1));
}
  
// Driver code
int main()
{
    int n = 4;
    cout << "Largest = " << largestSum(n) << endl;
    cout << "Smallest = " << smallestSum(n);
  
    return 0;
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
class GFG {
  
    // Function to return the smallest sum
    // of 2 n-digit numbers
    static int smallestSum(int n)
    {
        if (n == 1)
            return 0;
        return (2 * (int)Math.pow(10, n - 1));
    }
  
    // Function to return the largest sum
    // of 2 n-digit numbers
    static int largestSum(int n)
    {
        return (2 * ((int)Math.pow(10, n) - 1));
    }
  
    // Driver code
    public static void main(String args[])
    {
        int n = 4;
        System.out.println("Largest = " + largestSum(n));
        System.out.print("Smallest = " + smallestSum(n));
    }
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach
  
# Function to return the smallest sum 
# of 2 n-digit numbers 
def smallestSum(n):
   
    if (n == 1):
        return 0
    return (2 * pow(10, n - 1))
  
# Function to return the largest sum 
# of 2 n-digit numbers 
def largestSum(n):
    return (2 * (pow(10, n) - 1))
  
# Driver code
n = 4
print("Largest = ", largestSum(n))
print("Smallest = ", smallestSum(n))
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach
using System;
class GFG {
  
    // Function to return the smallest sum
    // of 2 n-digit numbers
    static int smallestSum(int n)
    {
        if (n == 1)
            return 0;
        return (2 * (int)Math.Pow(10, n - 1));
    }
  
    // Function to return the largest sum
    // of 2 n-digit numbers
    static int largestSum(int n)
    {
        return (2 * ((int)Math.Pow(10, n) - 1));
    }
  
    // Driver code
    public static void Main()
    {
        int n = 4;
        Console.WriteLine("Largest = " + largestSum(n));
        Console.Write("Smallest = " + smallestSum(n));
    }
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP implementation of the approach
  
// Function to return the smallest sum 
// of 2 n-digit numbers 
function smallestSum($n)
{
    if ($n == 1)
        return 0;
    return (2 * pow(10, $n - 1));
}
   
// Function to return the largest sum
// of 2 n-digit numbers
function largestSum($n)
{
    return 2 * ( pow(10, $n) - 1 );
}
  
// Driver code
$n = 4;
echo "Largest = " . largestSum($n) . "\n";
echo "Smallest = " . smallestSum($n);
?>
chevron_right

Output:
Largest = 19998
Smallest = 2000



Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.




Article Tags :
Practice Tags :