Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Smallest and Largest sum of two n-digit numbers

  • Last Updated : 26 Mar, 2021

Given an integer N ≥ 1, the task is to find the smallest and the largest sum of two N digit numbers.
Examples: 
 

Input: N = 1 
Output: 
Largest = 18 
Smallest = 0 
Largest 1-digit number is 9 and 9 + 9 = 18 
Smallest 1-digit number is 0 and 0 + 0 = 0
Input: N = 2 
Output: 
Largest = 198 
Smallest = 20 
 

Hey! Looking for some great resources suitable for young ones? You've come to the right place. Check out our self-paced courses designed for students of grades I-XII

Start with topics like Python, HTML, ML, and learn to make some games and apps all with the help of our expertly designed content! So students worry no more, because GeeksforGeeks School is now here!

 



 

Approach: 
 

  • For largest: The answer will be 2 * (10N – 1) because the series of sum of two n digit numbers will go on like 2 * 9, 2 * 99, 2 * 999, …
  • For smallest: 
    • If N = 1 then the answer will be 0.
    • If N > 1 then the answer will be 2 * (10N – 1) because the series of sum of two n digit numbers will go on like 0, 20, 200, 2000, …

Below is the implementation of the above approach:
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the smallest sum
// of 2 n-digit numbers
int smallestSum(int n)
{
    if (n == 1)
        return 0;
    return (2 * pow(10, n - 1));
}
 
// Function to return the largest sum
// of 2 n-digit numbers
int largestSum(int n)
{
    return (2 * (pow(10, n) - 1));
}
 
// Driver code
int main()
{
    int n = 4;
    cout << "Largest = " << largestSum(n) << endl;
    cout << "Smallest = " << smallestSum(n);
 
    return 0;
}

Java




// Java implementation of the approach
class GFG {
 
    // Function to return the smallest sum
    // of 2 n-digit numbers
    static int smallestSum(int n)
    {
        if (n == 1)
            return 0;
        return (2 * (int)Math.pow(10, n - 1));
    }
 
    // Function to return the largest sum
    // of 2 n-digit numbers
    static int largestSum(int n)
    {
        return (2 * ((int)Math.pow(10, n) - 1));
    }
 
    // Driver code
    public static void main(String args[])
    {
        int n = 4;
        System.out.println("Largest = " + largestSum(n));
        System.out.print("Smallest = " + smallestSum(n));
    }
}

Python3




# Python3 implementation of the approach
 
# Function to return the smallest sum
# of 2 n-digit numbers
def smallestSum(n):
  
    if (n == 1):
        return 0
    return (2 * pow(10, n - 1))
 
# Function to return the largest sum
# of 2 n-digit numbers
def largestSum(n):
    return (2 * (pow(10, n) - 1))
 
# Driver code
n = 4
print("Largest = ", largestSum(n))
print("Smallest = ", smallestSum(n))

C#




// C# implementation of the approach
using System;
class GFG {
 
    // Function to return the smallest sum
    // of 2 n-digit numbers
    static int smallestSum(int n)
    {
        if (n == 1)
            return 0;
        return (2 * (int)Math.Pow(10, n - 1));
    }
 
    // Function to return the largest sum
    // of 2 n-digit numbers
    static int largestSum(int n)
    {
        return (2 * ((int)Math.Pow(10, n) - 1));
    }
 
    // Driver code
    public static void Main()
    {
        int n = 4;
        Console.WriteLine("Largest = " + largestSum(n));
        Console.Write("Smallest = " + smallestSum(n));
    }
}

PHP




<?php
// PHP implementation of the approach
 
// Function to return the smallest sum
// of 2 n-digit numbers
function smallestSum($n)
{
    if ($n == 1)
        return 0;
    return (2 * pow(10, $n - 1));
}
  
// Function to return the largest sum
// of 2 n-digit numbers
function largestSum($n)
{
    return 2 * ( pow(10, $n) - 1 );
}
 
// Driver code
$n = 4;
echo "Largest = " . largestSum($n) . "\n";
echo "Smallest = " . smallestSum($n);
?>

Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to return the smallest sum
// of 2 n-digit numbers
function smallestSum(n)
{
    if (n == 1)
        return 0;
    return (2 * Math.pow(10, n - 1));
}
 
// Function to return the largest sum
// of 2 n-digit numbers
function largestSum(n)
{
    return (2 * (Math.pow(10, n) - 1));
}
 
// Driver code
var n = 4;
document.write("Largest = " + largestSum(n) + "<br>");
document.write("Smallest = " + smallestSum(n));
 
// This code is contributed by noob2000.
</script>
Output: 
Largest = 19998
Smallest = 2000

 




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!