Size of The Subarray With Maximum Sum

An array is given, find length of the subarray having maximum sum.

Examples :

Input :  a[] = {1, -2, 1, 1, -2, 1}
Output : Length of the subarray is 2
Explanation: Subarray with consecutive elements
and maximum sum will be {1, 1}. So length is 2

Input : ar[] = { -2, -3, 4, -1, -2, 1, 5, -3 }
Output : Length of the subarray is 5
Explanation: Subarray with consecutive elements
and maximum sum will be {4, -1, -2, 1, 5}.

Recommended: Please try your approach on {IDE} first, before moving on to the solution.

This problem is mainly a variation of Largest Sum Contiguous Subarray Problem.

The idea is to update starting index whenever sum ending here becomes less than 0.

 // C++ program to print length of the largest  // contiguous array sum #include #include using namespace std;    int maxSubArraySum(int a[], int size) {     int max_so_far = INT_MIN, max_ending_here = 0,        start =0, end = 0, s=0;        for (int i=0; i< size; i++ )     {         max_ending_here += a[i];            if (max_so_far < max_ending_here)         {             max_so_far = max_ending_here;             start = s;             end = i;         }            if (max_ending_here < 0)         {             max_ending_here = 0;             s = i + 1;         }     }            return (end - start + 1); }    /*Driver program to test maxSubArraySum*/ int main() {     int a[] = {-2, -3, 4, -1, -2, 1, 5, -3};     int n = sizeof(a)/sizeof(a);     cout << maxSubArraySum(a, n);     return 0; }

 // Java program to print length of the largest  // contiguous array sum class GFG {        static int maxSubArraySum(int a[], int size)     {         int max_so_far = Integer.MIN_VALUE,         max_ending_here = 0,start = 0,         end = 0, s = 0;            for (int i = 0; i < size; i++)          {             max_ending_here += a[i];                if (max_so_far < max_ending_here)              {                 max_so_far = max_ending_here;                 start = s;                 end = i;             }                if (max_ending_here < 0)              {                 max_ending_here = 0;                 s = i + 1;             }         }         return (end - start + 1);     }        // Driver code     public static void main(String[] args)     {         int a[] = { -2, -3, 4, -1, -2, 1, 5, -3 };         int n = a.length;         System.out.println(maxSubArraySum(a, n));     } }

 # Python program to print largest contiguous array sum    from sys import maxsize    # Function to find the maximum contiguous subarray # and print its starting and end index def maxSubArraySum(a,size):        max_so_far = -maxsize - 1     max_ending_here = 0     start = 0     end = 0     s = 0        for i in range(0,size):            max_ending_here += a[i]            if max_so_far < max_ending_here:             max_so_far = max_ending_here             start = s             end = i            if max_ending_here < 0:             max_ending_here = 0             s = i+1        return (end - start + 1)    # Driver program to test maxSubArraySum a = [-2, -3, 4, -1, -2, 1, 5, -3] print(maxSubArraySum(a,len(a)))

 // C# program to print length of the  // largest contiguous array sum using System;    class GFG {        // Function to find maximum subarray sum     static int maxSubArraySum(int []a, int size)     {         int max_so_far = int.MinValue,         max_ending_here = 0,start = 0,         end = 0, s = 0;            for (int i = 0; i < size; i++)          {             max_ending_here += a[i];                if (max_so_far < max_ending_here)              {                 max_so_far = max_ending_here;                 start = s;                 end = i;             }                if (max_ending_here < 0)              {                 max_ending_here = 0;                 s = i + 1;             }         }         return (end - start + 1);     }        // Driver code     public static void Main(String[] args)     {         int []a = {-2, -3, 4, -1, -2, 1, 5, -3};         int n = a.Length;         Console.Write(maxSubArraySum(a, n));     } }    // This code is contributed by parashar...

 = 0)     {         \$y++;         \$slope_error_new -= 2 * (\$x2 - \$x1);     } } }    // Driver Code \$x1 = 3; \$y1 = 2; \$x2 = 15; \$y2 = 5; bresenham(\$x1, \$y1, \$x2, \$y2);    // This code is contributed by nitin mittal. ?>

Output :
5

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : parashar, vt_m

Article Tags :