Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Size of the largest divisible subset in an Array

  • Last Updated : 02 Jun, 2021

Given an array arr[] of size N. The task is to find the size of the set of numbers from the given array such that each number divides another or is divisible by another.

Examples: 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input : arr[] = {3, 4, 6, 8, 10, 18, 21, 24} 
Output :
One of the possible sets with a maximum size is {3, 6, 18} 



Input : arr[] = {2, 3, 4, 8, 16} 
Output : 4

Approach:

  1. Let’s take all the numbers in increasing order.
  2. Note that set X = xi, …, ?xk} is acceptable iff xi divides xi+1 for (1 ≤ i ≤ k – 1).
  3. Therefore, dp[x] is equal to the length of the longest suitable increasing subsequence starting at the number x.
  4. DP Relation: dp[x] = max(dp[x], 1 + dp[y]) if x divides y.

Below is the implementation of the above approach: 

CPP




// C++ implementation of the above approach
#include <bits/stdc++.h>
using namespace std;
 
#define N 1000005
 
// Function to find the size of the
//largest divisible subarray
int maximum_set(int a[], int n)
{
    int dp[N] = { 0 };
 
    // Mark all elements of the array
    for (int i = 0; i < n; i++)
        dp[a[i]] = 1;
 
    int ans = 1;
 
    // Traverse reverse
    for (int i = N - 1; i >= 1; i--) {
 
        if (dp[i] != 0) {
            // For all multiples of i
            for (int j = 2 * i; j < N; j += i) {
                dp[i] = max(dp[i], 1 + dp[j]);
                ans = max(ans, dp[i]);
            }
        }
    }
 
    // Return the required answer
    return ans;
}
 
// Driver code
int main()
{
    int arr[] = { 3, 4, 6, 8, 10, 18, 21, 24 };
 
    int n = sizeof(arr) / sizeof(arr[0]);
 
    // Function call
    cout << maximum_set(arr, n);
 
    return 0;
}

Java




// Java implementation of the above approach
class GFG
{
     
    final static int N = 1000005 ;
     
    // Function to find the size of the
    //largest divisible subarray
    static int maximum_set(int a[], int n)
    {
        int dp[] = new int[N] ;
     
        // Mark all elements of the array
        for (int i = 0; i < n; i++)
            dp[a[i]] = 1;
     
        int ans = 1;
     
        // Traverse reverse
        for (int i = N - 1; i >= 1; i--)
        {
     
            if (dp[i] != 0)
            {
                // For all multiples of i
                for (int j = 2 * i; j < N; j += i)
                {
                    dp[i] = Math.max(dp[i], 1 + dp[j]);
                    ans = Math.max(ans, dp[i]);
                }
            }
        }
     
        // Return the required answer
        return ans;
    }
     
    // Driver code
    public static void main (String[] args)
    {
        int arr[] = { 3, 4, 6, 8, 10, 18, 21, 24 };
     
        int n = arr.length;
     
        // Function call
        System.out.println(maximum_set(arr, n));
    }
}
 
// This code is contributed by AnkitRai01

Python




# Python3 implementation of the above approach
 
N = 1000005
 
# Function to find the size of the
# largest divisible subarray
def maximum_set(a, n):
    dp = [0 for i in range(N)]
 
    # Mark all elements of the array
    for i in a:
        dp[i] = 1
 
    ans = 1
 
    # Traverse reverse
    for i in range(N - 1, 0, -1):
 
        if (dp[i] != 0):
             
            # For all multiples of i
            for j in range(2 * i, N, i):
                dp[i] = max(dp[i], 1 + dp[j])
                ans = max(ans, dp[i])
 
    # Return the required answer
    return ans
 
# Driver code
 
arr = [3, 4, 6, 8, 10, 18, 21, 24]
 
n = len(arr)
 
# Function call
print(maximum_set(arr, n))
 
# This code is contributed by mohit kumar 29

C#




// C# implementation of the above approach
using System;
 
class GFG
{
    static int N = 1000005 ;
     
    // Function to find the size of the
    //largest divisible subarray
    static int maximum_set(int []a, int n)
    {
        int []dp = new int[N] ;
     
        // Mark all elements of the array
        for (int i = 0; i < n; i++)
            dp[a[i]] = 1;
     
        int ans = 1;
     
        // Traverse reverse
        for (int i = N - 1; i >= 1; i--)
        {
     
            if (dp[i] != 0)
            {
                // For all multiples of i
                for (int j = 2 * i; j < N; j += i)
                {
                    dp[i] = Math.Max(dp[i], 1 + dp[j]);
                    ans = Math.Max(ans, dp[i]);
                }
            }
        }
     
        // Return the required answer
        return ans;
    }
     
    // Driver code
    public static void Main()
    {
        int []arr = { 3, 4, 6, 8, 10, 18, 21, 24 };
        int n = arr.Length;
     
        // Function call
        Console.WriteLine(maximum_set(arr, n));
    }
}
 
// This code is contributed by AnkitRai01

Javascript




<script>
// Javascript implementation of the above approach
 
let N = 1000005
 
// Function to find the size of the
//largest divisible subarray
function maximum_set(a, n) {
    let dp = new Array(N).fill(0);
 
    // Mark all elements of the array
    for (let i = 0; i < n; i++)
        dp[a[i]] = 1;
 
    let ans = 1;
 
    // Traverse reverse
    for (let i = N - 1; i >= 1; i--) {
 
        if (dp[i] != 0) {
            // For all multiples of i
            for (let j = 2 * i; j < N; j += i) {
                dp[i] = Math.max(dp[i], 1 + dp[j]);
                ans = Math.max(ans, dp[i]);
            }
        }
    }
 
    // Return the required answer
    return ans;
}
 
// Driver code
 
let arr = [3, 4, 6, 8, 10, 18, 21, 24];
 
let n = arr.length;
 
// Function call
document.write(maximum_set(arr, n));
 
 
</script>
Output: 
3

 

Time Complexity: O(n*sqrt(n))
 




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!