Size of smallest subarray to be removed to make count of array elements greater and smaller than K equal

Given an integer K and an array arr[] consisting of N integers, the task is to find the length of the subarray of smallest possible length to be removed such that the count of array elements smaller than and greater than K in the remaining array are equal.

Examples:

Input: arr[] = {5, 7, 2, 8, 7, 4, 5, 9}, K = 5
Output: 2
Explanation:
Smallest subarray required to be removed is {8, 7}, to make the largest resultant array {5, 7, 2, 4, 5, 9} satisfy the given condition.

Input: arr[] = {12, 16, 12, 13, 10}, K = 13
Output: 3
Explanation:
mallest subarray required to be removed is {12, 13, 10} to make the largest resultant array {12, 16} satisfy the given condition.

Naive Approach: The simplest approach to solve the problem is to generate all possible subarrays, and traverse the remaining array, to keep count of array elements that are strictly greater than and smaller than integer K. Then, select the smallest subarray whose deletion gives an array having equal number of smaller and greater elements.



Time Complexity: O(N2)
Auxiliary Space: O(N2)

Efficient Approach: The idea is to use Hashing with some modification to the array to solve it in O(N) time. The given array can have 3 types of elements:

Now, calculate the sum of all array elements and store it in a variable, say total_sum. Now, the total_sum can have three possible ranges of values:

Below is the implementation of the above approach:

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ Program to implement
// the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function ot find the length
// of the smallest subarray
int smallSubarray(int arr[], int n,
                  int total_sum)
{
    // Stores (prefix Sum, index)
    // as (key, value) mappings
    unordered_map<int, int> m;
    int length = INT_MAX;
    int prefixSum = 0;
 
    // Iterate till N
    for (int i = 0; i < n; i++) {
 
        // Update the prefixSum
        prefixSum += arr[i];
 
        // Update the length
        if (prefixSum == total_sum) {
            length = min(length, i + 1);
        }
 
        // Put the latest index to
        // find the minimum length
        m[prefixSum] = i;
 
        if (m.count(prefixSum - total_sum)) {
 
            // Update the length
            length
                = min(length,
                      i - m[prefixSum - total_sum]);
        }
    }
 
    // Return the answer
    return length;
}
 
// Function to find the length of
// the largest subarray
int smallestSubarrayremoved(int arr[], int n,
                            int k)
{
 
    // Stores the sum of all array
    // elements after modification
    int total_sum = 0;
 
    for (int i = 0; i < n; i++) {
 
        // Change greater than k to 1
        if (arr[i] > k) {
            arr[i] = 1;
        }
 
        // Change smaller than k to -1
        else if (arr[i] < k) {
            arr[i] = -1;
        }
 
        // Change equal to k to 0
        else {
            arr[i] = 0;
        }
 
        // Update total_sum
        total_sum += arr[i];
    }
 
    // No deletion required, return 0
    if (total_sum == 0) {
        return 0;
    }
 
    else {
 
        // Delete smallest subarray
        // that has sum = total_sum
        return smallSubarray(arr, n,
                             total_sum);
    }
}
 
// Driver Code
int main()
{
    int arr[] = { 12, 16, 12, 13, 10 };
    int K = 13;
 
    int n = sizeof(arr) / sizeof(int);
 
    cout << smallestSubarrayremoved(
        arr, n, K);
 
    return 0;
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to implement
// the above approach
import java.util.*;
 
class GFG{
     
// Function ot find the length
// of the smallest subarray
static int smallSubarray(int arr[], int n,
                         int total_sum)
{
     
    // Stores (prefix Sum, index)
    // as (key, value) mappings
    Map<Integer,
        Integer> m = new HashMap<Integer,
                                 Integer>();
                                  
    int length = Integer.MAX_VALUE;
    int prefixSum = 0;
     
    // Iterate till N
    for(int i = 0; i < n; i++)
    {
         
        // Update the prefixSum
        prefixSum += arr[i];
         
        // Update the length
        if (prefixSum == total_sum)
        {
            length = Math.min(length, i + 1);
        }
         
        // Put the latest index to
        // find the minimum length
        m.put(prefixSum, i);
         
        if (m.containsKey(prefixSum - total_sum))
        {
             
            // Update the length
            length = Math.min(length,
                              i - m.get(prefixSum -
                                        total_sum));
        }
    }
     
    // Return the answer
    return length;
}
 
// Function to find the length of
// the largest subarray
static int smallestSubarrayremoved(int arr[], int n,
                                   int k)
{
     
    // Stores the sum of all array
    // elements after modification
    int total_sum = 0;
     
    for(int i = 0; i < n; i++)
    {
         
        // Change greater than k to 1
        if (arr[i] > k)
        {
            arr[i] = 1;
        }
         
        // Change smaller than k to -1
        else if (arr[i] < k)
        {
            arr[i] = -1;
        }
         
        // Change equal to k to 0
        else
        {
            arr[i] = 0;
        }
         
        // Update total_sum
        total_sum += arr[i];
    }
     
    // No deletion required, return 0
    if (total_sum == 0)
    {
        return 0;
    }
    else
    {
         
        // Delete smallest subarray
        // that has sum = total_sum
        return smallSubarray(arr, n, total_sum);
    }
}
 
// Driver Code
public static void main(String[] args)
{
    int arr[] = { 12, 16, 12, 13, 10 };
    int K = 13;
    int n = arr.length;
     
    System.out.println(
        smallestSubarrayremoved(arr, n, K));
}
}
 
// This code is contributed by chitranayal
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to implement
# the above approach
import sys
 
# Function ot find the length
# of the smallest subarray
def smallSubarray(arr, n, total_sum):
 
    # Stores (prefix Sum, index)
    # as (key, value) mappings
    m = {}
    length = sys.maxsize
    prefixSum = 0
 
    # Iterate till N
    for i in range(n):
 
        # Update the prefixSum
        prefixSum += arr[i]
 
        # Update the length
        if(prefixSum == total_sum):
            length = min(length, i + 1)
 
        # Put the latest index to
        # find the minimum length
        m[prefixSum] = i
 
        if((prefixSum - total_sum) in m.keys()):
 
            # Update the length
            length = min(length,
                         i - m[prefixSum - total_sum])
 
    # Return the answer
    return length
 
# Function to find the length of
# the largest subarray
def smallestSubarrayremoved(arr, n, k):
 
    # Stores the sum of all array
    # elements after modification
    total_sum = 0
 
    for i in range(n):
 
        # Change greater than k to 1
        if(arr[i] > k):
            arr[i] = 1
 
        # Change smaller than k to -1
        elif(arr[i] < k):
            arr[i] = -1
 
        # Change equal to k to 0
        else:
            arr[i] = 0
 
        # Update total_sum
        total_sum += arr[i]
 
    # No deletion required, return 0
    if(total_sum == 0):
        return 0
    else:
         
        # Delete smallest subarray
        # that has sum = total_sum
        return smallSubarray(arr, n,
                             total_sum)
                              
# Driver Code
arr = [ 12, 16, 12, 13, 10 ]
K = 13
 
n = len(arr)
 
# Function call
print(smallestSubarrayremoved(arr, n, K))
 
# This code is contributed by Shivam Singh
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to implement
// the above approach
using System;
using System.Collections.Generic;
class GFG{
     
// Function ot find the length
// of the smallest subarray
static int smallSubarray(int []arr, int n,
                         int total_sum)
{
     
    // Stores (prefix Sum, index)
    // as (key, value) mappings
    Dictionary<int,
               int> m = new Dictionary<int,
                                       int>();
                                  
    int length = int.MaxValue;
    int prefixSum = 0;
     
    // Iterate till N
    for(int i = 0; i < n; i++)
    {
         
        // Update the prefixSum
        prefixSum += arr[i];
         
        // Update the length
        if (prefixSum == total_sum)
        {
            length = Math.Min(length, i + 1);
        }
         
        // Put the latest index to
        // find the minimum length
        if (m.ContainsKey(prefixSum))
            m[prefixSum] = i;
        else
            m.Add(prefixSum, i);
         
        if (m.ContainsKey(prefixSum - total_sum))
        {
             
            // Update the length
            length = Math.Min(length,
                              i - m[prefixSum -
                                    total_sum]);
        }
    }
     
    // Return the answer
    return length;
}
 
// Function to find the length of
// the largest subarray
static int smallestSubarrayremoved(int []arr,
                                   int n, int k)
{
     
    // Stores the sum of all array
    // elements after modification
    int total_sum = 0;
     
    for(int i = 0; i < n; i++)
    {
         
        // Change greater than k to 1
        if (arr[i] > k)
        {
            arr[i] = 1;
        }
         
        // Change smaller than k to -1
        else if (arr[i] < k)
        {
            arr[i] = -1;
        }
         
        // Change equal to k to 0
        else
        {
            arr[i] = 0;
        }
         
        // Update total_sum
        total_sum += arr[i];
    }
     
    // No deletion required, return 0
    if (total_sum == 0)
    {
        return 0;
    }
    else
    {
         
        // Delete smallest subarray
        // that has sum = total_sum
        return smallSubarray(arr, n, total_sum);
    }
}
 
// Driver Code
public static void Main(String[] args)
{
    int []arr = { 12, 16, 12, 13, 10 };
    int K = 13;
    int n = arr.Length;
     
    Console.WriteLine(
            smallestSubarrayremoved(arr, n, K));
}
}
 
// This code is contributed by Rajput-Ji
chevron_right

Output: 
3



 

Time Complexity: O(N)
Auxiliary Space: O(N)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




Recommended Posts:


Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Article Tags :