# Sink Odd nodes in Binary Tree

Given a Binary Tree having odd and even elements, sink all its odd valued nodes such that no node with odd value could be parent of node with even value. There can be multiple outputs for a given tree, we need to print one of them. It is always possible to convert a tree (Note that a node with even nodes and all odd nodes follows the rule)

```Input :
1
/    \
2      3
Output
2            2
/    \   OR   /   \
1      3      3     1

Input :
1
/    \
5       8
/  \     /  \
2    4   9    10
Output :
2                 4
/    \            /    \
4       8    OR   2      8    OR .. (any tree with
/  \    /  \      /  \   / \          same keys and
5   1  9   10    5    1 9   10        no odd is parent
of even)
```

We strongly recommend you to minimize your browser and try this yourself first.

Basically, we need to swap odd value of a node with even value of one of its descendants. The idea is to traverse the tree in postorder fashion. Since we process in postorder, for each odd node encountered, its left and right subtrees are already balanced (sinked), we check if it’s an odd node and its left or right child has an even value. If even value is found, we swap the node’s data with that of even child node and call the procedure on the even child to balance the subtree. If both children have odd values, that means that all its descendants are odd.

Below is the implementation of the idea.

## C++

 `// Program to sink odd nodes to the bottom of ` `// binary tree ` `#include ` `using` `namespace` `std; ` ` `  `// A binary tree node ` `struct` `Node ` `{ ` `    ``int` `data; ` `    ``Node* left, *right; ` `}; ` ` `  `// Helper function to allocates a new node ` `Node* newnode(``int` `data) ` `{ ` `    ``Node* node = ``new` `Node; ` `    ``node->data = data; ` `    ``node->left = node->right = NULL; ` `    ``return` `node; ` `} ` ` `  `// Helper function to check if node is leaf node ` `bool` `isLeaf(Node *root) ` `{ ` `    ``return` `(root->left == NULL && root->right == NULL); ` `} ` ` `  `// A recursive method to sink a tree with odd root ` `// This method assumes that the subtrees are already ` `// sinked. This method is similar to Heapify of ` `// Heap-Sort ` `void` `sink(Node *&root) ` `{ ` `    ``// If NULL or is a leaf, do nothing ` `    ``if` `(root == NULL || isLeaf(root)) ` `        ``return``; ` ` `  `    ``// if left subtree exists and left child is even ` `    ``if` `(root->left && !(root->left->data & 1)) ` `    ``{ ` `        ``// swap root's data with left child and ` `        ``// fix left subtree ` `        ``swap(root->data, root->left->data); ` `        ``sink(root->left); ` `    ``} ` ` `  `    ``// if right subtree exists and right child is even ` `    ``else` `if``(root->right && !(root->right->data & 1)) ` `    ``{ ` `        ``// swap root's data with right child and ` `        ``// fix right subtree ` `        ``swap(root->data, root->right->data); ` `        ``sink(root->right); ` `    ``} ` `} ` ` `  `// Function to sink all odd nodes to the bottom of binary ` `// tree. It does a postorder traversal and calls sink() ` `// if any odd node is found ` `void` `sinkOddNodes(Node* &root) ` `{ ` `    ``// If NULL or is a leaf, do nothing ` `    ``if` `(root == NULL || isLeaf(root)) ` `        ``return``; ` ` `  `    ``// Process left and right subtrees before this node ` `    ``sinkOddNodes(root->left); ` `    ``sinkOddNodes(root->right); ` ` `  `    ``// If root is odd, sink it ` `    ``if` `(root->data & 1) ` `        ``sink(root); ` `} ` ` `  `// Helper function to do Level Order Traversal of ` `// Binary Tree level by level. This function is used ` `// here only for showing modified tree. ` `void` `printLevelOrder(Node* root) ` `{ ` `    ``queue q; ` `    ``q.push(root); ` ` `  `    ``// Do Level order traversal ` `    ``while` `(!q.empty()) ` `    ``{ ` `        ``int` `nodeCount = q.size(); ` ` `  `        ``// Print one level at a time ` `        ``while` `(nodeCount) ` `        ``{ ` `            ``Node *node = q.front(); ` `            ``printf``(``"%d "``, node->data); ` `            ``q.pop(); ` `            ``if` `(node->left != NULL) ` `                ``q.push(node->left); ` `            ``if` `(node->right != NULL) ` `                ``q.push(node->right); ` `            ``nodeCount--; ` `        ``} ` ` `  `        ``// Line separator for levels ` `        ``printf``(``"\n"``); ` `    ``} ` `} ` ` `  `// Driver program to test above functions ` `int` `main() ` `{ ` `    ``/* Constructed binary tree is ` `            ``1 ` `          ``/   \ ` `         ``5      8 ` `        ``/ \   /  \ ` `       ``2   4 9   10     */` ` `  `    ``Node *root = newnode(1); ` `    ``root->left = newnode(5); ` `    ``root->right    = newnode(8); ` `    ``root->left->left = newnode(2); ` `    ``root->left->right = newnode(4); ` `    ``root->right->left = newnode(9); ` `    ``root->right->right = newnode(10); ` ` `  `    ``sinkOddNodes(root); ` ` `  `    ``printf``(``"Level order traversal of modified tree\n"``); ` `    ``printLevelOrder(root); ` ` `  `    ``return` `0; ` `} `

## Python3

 `# Python3 program to sink odd nodes  ` `# to the bottom of binary tree  ` ` `  `# A binary tree node  ` `# Helper function to allocates a new node  ` `class` `newnode:  ` ` `  `    ``# Constructor to create a new node  ` `    ``def` `__init__(``self``, key):  ` `        ``self``.data ``=` `key  ` `        ``self``.left ``=` `None` `        ``self``.right ``=` `None` ` `  `# Helper function to check  ` `# if node is leaf node  ` `def` `isLeaf(root): ` `    ``return` `(root.left ``=``=` `None` `and`  `            ``root.right ``=``=` `None``)  ` ` `  `# A recursive method to sink a tree with odd root  ` `# This method assumes that the subtrees are  ` `# already sinked. This method is similar to  ` `# Heapify of Heap-Sort  ` `def` `sink(root): ` `     `  `    ``# If None or is a leaf, do nothing  ` `    ``if` `(root ``=``=` `None` `or` `isLeaf(root)): ` `        ``return` `     `  `    ``# if left subtree exists and  ` `    ``# left child is even  ` `    ``if` `(root.left ``and` `not``(root.left.data & ``1``)): ` `         `  `        ``# swap root's data with left child   ` `        ``# and fix left subtree  ` `        ``root.data, \ ` `        ``root.left.data ``=` `root.left.data, \ ` `                         ``root.data ` `        ``sink(root.left)  ` `         `  `    ``# if right subtree exists and  ` `    ``# right child is even  ` `    ``elif``(root.right ``and` `not``(root.right.data & ``1``)): ` `         `  `        ``# swap root's data with right child  ` `        ``# and fix right subtree  ` `        ``root.data, \ ` `        ``root.right.data ``=` `root.right.data, \ ` `                          ``root.data ` `        ``sink(root.right)  ` ` `  `# Function to sink all odd nodes to  ` `# the bottom of binary tree. It does  ` `# a postorder traversal and calls sink()  ` `# if any odd node is found  ` `def` `sinkOddNodes(root): ` `     `  `    ``# If None or is a leaf, do nothing  ` `    ``if` `(root ``=``=` `None` `or` `isLeaf(root)): ` `        ``return` `         `  `    ``# Process left and right subtrees  ` `    ``# before this node  ` `    ``sinkOddNodes(root.left)  ` `    ``sinkOddNodes(root.right)  ` `     `  `    ``# If root is odd, sink it  ` `    ``if` `(root.data & ``1``): ` `        ``sink(root)  ` ` `  `# Helper function to do Level Order Traversal  ` `# of Binary Tree level by level. This function  ` `# is used here only for showing modified tree.  ` `def` `printLevelOrder(root): ` `    ``q ``=` `[] ` `    ``q.append(root)  ` `     `  `    ``# Do Level order traversal  ` `    ``while` `(``len``(q)): ` `         `  `        ``nodeCount ``=` `len``(q) ` `         `  `        ``# Print one level at a time  ` `        ``while` `(nodeCount): ` `            ``node ``=` `q[``0``]  ` `            ``print``(node.data, end ``=` `" "``) ` `            ``q.pop(``0``) ` `            ``if` `(node.left !``=` `None``): ` `                ``q.append(node.left)  ` `            ``if` `(node.right !``=` `None``): ` `                ``q.append(node.right)  ` `            ``nodeCount ``-``=` `1` `         `  `        ``# Line separator for levels  ` `        ``print``() ` ` `  `# Driver Code  ` `""" Constructed binary tree is  ` `            ``1  ` `        ``/ \  ` `        ``5 8  ` `        ``/ \ / \  ` `    ``2 4 9 10     """` `root ``=` `newnode(``1``)  ` `root.left ``=` `newnode(``5``)  ` `root.right ``=` `newnode(``8``)  ` `root.left.left ``=` `newnode(``2``)  ` `root.left.right ``=` `newnode(``4``)  ` `root.right.left ``=` `newnode(``9``)  ` `root.right.right ``=` `newnode(``10``)  ` ` `  `sinkOddNodes(root)  ` ` `  `print``(``"Level order traversal of modified tree"``)  ` `printLevelOrder(root) ` ` `  `# This code is contributed by SHUBHAMSINGH10 `

Output :

```Level order traversal of modified tree
2
4 8
5 1 9 10 ```

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up

Improved By : SHUBHAMSINGH10

Article Tags :
Practice Tags :

1

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.