Open In App
Related Articles

Simplify cot2θ(1 + tan2θ)

Improve Article
Improve
Save Article
Save
Like Article
Like

The word trigonon means triangle and metron meaning measure. So, trigonometry is the branch of mathematics that deals with the sides and angles of a triangle where one of the angles is 90°. Trigonometry finds its applications in various fields such as engineering, image compression, satellite navigation, and architecture.

Trigonometric function, also known as angle function or circular function, is a function of an angle or arc. It is simply expressed in terms of the ratios of pairs of sides of a right-angled triangle. The six commonly used trigonometric functions are: sine (sin), cosine (cos), tangent (tan), cotangent (cot), secant (sec), cosecant (cosec) angles.

\sin \theta = \frac{P}{B} \newline \cos \theta = \frac{B}{H} \newline \tan \theta = \frac{P}{B} \newline \cot \theta = \frac{B}{P} \newline \sec \theta = \frac{H}{B} \newline \cosec \theta = \frac{B}{P}

Where P is the perpendicular, B is the base, and H is the hypotenuse.

A trigonometric equation is an equation involving one or more trigonometric ratios of unknown angles. For example, sin2x – 5 cosx = 1/2.

Trigonometric Identities

Trigonometric identities are equations involving trigonometric functions that hold for all possible values of the variables. In trigonometry, there are a variety of identities that are used to solve a variety of trigonometric problems. They are as follows,

Pythagorean Trigonometric Identities

\sin^2θ + \cos^2θ = 1 \newline \sec^2θ-\tan^2θ = 1 \newline \cosec^2θ-\cot^2θ = 1

Reciprocal Trigonometric Identities

\tan \theta= \frac{1}{\cot \theta} \newline \sec \theta= \frac{1}{\cos \theta} \newline \cosec \theta= \frac{1}{\sin \theta}

Co-function Identities

\sin(\frac{\pi}{2}-\theta)=\cos\theta \newline \cos(\frac{\pi}{2}-\theta)=\sin\theta \newline \tan(\frac{\pi}{2}-\theta)=\cot\theta \newline \cot(\frac{\pi}{2}-\theta)=\tan\theta \newline \sec(\frac{\pi}{2}-\theta)=\cosec\theta \newline \cosec(\frac{\pi}{2}-\theta)=\sec\theta

Complementary Angle Identities

\sin(\frac{\pi}{2}-\theta)=\cos\theta \newline \cos(\frac{\pi}{2}-\theta)=\sin\theta \newline \tan(\frac{\pi}{2}-\theta)=\cot\theta \newline \cot(\frac{\pi}{2}-\theta)=\tan\theta \newline \sec(\frac{\pi}{2}-\theta)=\cosec\theta \newline \cosec(\frac{\pi}{2}-\theta)=\sec\theta

Supplementary Angle Identities

\newline \sin(\pi-\theta)=\sin\theta \newline \cos(\pi-\theta)=-\cos\theta \newline \tan(\pi-\theta)=-\tan\theta \newline \cot(\pi-\theta)=-\cot\theta \newline \sec(\pi-\theta)=-\sec\theta \newline \cosec(\pi-\theta)=\cosec\theta

Simplify cot2θ(1 + tan2θ)

Solution:

cot2θ(1 + tan2θ)

(1 + tan2θ) = sec2θ

Substituting the value of 1 + tan2θ in the above expression,

= cot2θ × (sec2θ)

Recognize that, \cot \theta=\frac{\cos \theta}{\sin\theta}  and \sec\theta=\frac{1}{\cos\theta}

On substituting the value of cotθ and secθ in the above expression,

\frac{\cos^2 \theta}{\sin^2 \theta} * \frac{1}{\cos^2 \theta}

\frac{1}{\sin^2 \theta} = \cosec^2 \theta

Sample Questions

Question 1: Find the value of \mathbf{\tan^2 \theta* (1 + \cot^2 \theta)}

Solution:

 \mathbf{\tan^2 \theta* (1 + \cot^2 \theta)}

1+\cot^2\theta=\cosec^2\theta

Substituting the value of 1+\cot^2\theta   in the above expression,

\tan^2 \theta*(\cosec^2\theta)

\frac{\sin^2 \theta}{\cos^2 \theta} * \frac{1}{\sin^2 \theta}

\frac{1}{\cos^2 \theta} = \sec^2 \theta

Question 2: Find the value of \mathbf{\cot^2 \theta* (1 - \cos^2 \theta)}

Solution:

\cot^2 \theta* (1 - \cos^2 \theta)

 \sin^2 \theta+\cos^2 \theta=1    therefore, 1-\cos^2 \theta=\sin^2 \theta          

\cot^2 \theta* \sin^2\theta

\frac{\cos^2 \theta}{\sin^2 \theta} * \sin^2 \theta

\cos^2\theta

Question 3: Find the value of \mathbf{\cot^2 \theta* (1 + \tan^2 \theta)}

Solution:

\cot^2 \theta* (1 + \tan^2 \theta)

1 + \tan^2 \theta=\sec^2\theta

\cot^2 \theta* \sec^2\theta

Also, \cot \theta=\frac{\cos\theta}{\sin \theta}     and \sec\theta=\frac{1}{\cos\theta}

 \frac{\cos^2\theta}{\sin^2\theta}*\frac{1}{\cos^2\theta}

 \frac{1}{\sin^2\theta}   =\cosec^2\theta    

Question 4:  Find the value of \mathbf{\cot^2 \theta* (\sec^2 \theta-1)}

Solution:

\cot^2 \theta* (\sec^2 \theta-1)

1 + \tan^2 \theta=\sec^2\theta   , therefore, \sec^2\theta-1 =\tan^2 \theta     

 \cot^2\theta*\tan^2\theta

Also, we are aware that \tan\theta=\frac{1}{\cot\theta}

 \cot^2\theta*\frac{1}{\cot^2\theta}   =1


Whether you're preparing for your first job interview or aiming to upskill in this ever-evolving tech landscape, GeeksforGeeks Courses are your key to success. We provide top-quality content at affordable prices, all geared towards accelerating your growth in a time-bound manner. Join the millions we've already empowered, and we're here to do the same for you. Don't miss out - check it out now!

Last Updated : 03 Sep, 2021
Like Article
Save Article
Previous
Next
Similar Reads
Complete Tutorials