Skip to content
Related Articles

Related Articles

Improve Article

Simplified Data Encryption Standard | Set 2

  • Difficulty Level : Expert
  • Last Updated : 22 Oct, 2021
Geek Week

Prerequisite – Simplified Data Encryption Standard | Set 1

Simplified Data Encryption Standard is a simple version of Data Encryption Standard having a 10-bit key and 8-bit plain text. It is much smaller than the DES algorithm as it takes only 8-bit plain text whereas DES takes 64-bit plain text. It was developed for educational purpose so that understanding DES can become easy. It is a block cipher algorithm and uses a symmetric key for its algorithm i.e. they use the same key for both encryption and decryption. It has 2 rounds for encryption which use two different keys. 

First, we need to generate 2 keys before encryption. After generating keys we pass them to each individual round for s-des encryption. The below diagram shows the steps involved in the s-des algorithm.

Components :
S-DES encryption involves four functions –



1. Initial permutation(IP) –

2. Complex function (fk) –
It is the combination of permutation and substitution functions. The below image represents a round of encryption and decryption. This round is repeated twice in each encryption and decryption. 
 

Components in fk are –
a. Expanded Permutation (EP) – 
It takes a 4-bit input and converts it into an 8-bit output.
 

       
b. S-boxes (S0 and S1) –
It is a basic component of a symmetric key algorithm that performs substitution.
 



       
c. Permutation P4 –

3. Switch (SW) –
 

4. Inverse of Initial Permutation (IP-1) –

First, we need to generate 2 keys before encryption. 

Consider, the entered 10-bit key is - 1 0 1 0 0 0 0 0 1 0

Therefore,

Key-1 is - 1 0 1 0 0 1 0 0
Key-2 is - 0 1 0 0 0 0 1 1

Encryption –

Entered 8-bit plaintext is - 1 0 0 1 0 1 1 1

Step-1:
We perform initial permutation on our 8-bit plain text using the IP table. The initial permutation is defined as – 

IP(k1, k2, k3, k4, k5, k6, k7, k8) = (k2, k6, k3, k1, k4, k8, k5, k7)
After ip = 0 1 0 1 1 1 0 1

Step-2:
After the initial permutation, we get an 8-bit block of text which we divide into 2 halves of 4 bit each.



l = 0 1 0 1  and r = 1 1 0 1

On the right half, we perform expanded permutation using EP table which converts 4 bits into 8 bits. Expand permutation is defined as – 

EP(k1, k2, k3, k4) = (k4, k1, k2, k3, k2, k3, k4, k1)
After ep = 1 1 1 0 1 0 1 1

We perform XOR operation using the first key K1 with the output of expanded permutation.

Key-1 is - 1 0 1 0 0 1 0 0
(1 0 1 0 0 1 0 0) XOR (1 1 1 0 1 0 1 1) =  0 1 0 0 1 1 1 1
After XOR operation with 1st Key = 0 1 0 0 1 1 1 1

Again we divide the output of XOR into 2 halves of 4 bit each.

l = 0 1 0 0  and r = 1 1 1 1

We take the first and fourth bit as row and the second and third bit as a column for our S boxes.

S0 = [1,0,3,2
      3,2,1,0
      0,2,1,3
      3,1,3,2]

S1=  [0,1,2,3
      2,0,1,3
      3,0,1,0
      2,1,0,3]

For l = 0 1 0 0
row = 00 = 0, column = 10 = 2
S0 = 3 = 11

For r = 1 1 1 1 
row = 11 = 3, column = 11 = 3
S1 = 3 = 11

After first S-Boxes combining S0 and S1 = 1 1 1 1

S boxes gives a 2-bit output which we combine to get 4 bits and then perform permutation using the P4 table. P4 is defined as – 

P4(k1, k2, k3, k4) = (k2, k4, k3, k1)
After P4 = 1 1 1 1

We XOR the output of the P4 table with the left half of the initial permutation table i.e. IP table.

(0 1 0 1) XOR (1 1 1 1) = 1 0 1 0
After XOR operation with left nibble of after ip = 1 0 1 0

We combine both halves i.e. right half of initial permutation and output of ip.

Combine 1 1 0 1 and 1 0 1 0
After combine = 1 0 1 0 1 1 0 1

Step-3:
Now, divide the output into two halves of 4 bit each. Combine them again, but now the left part should become right and the right part should become left.

After step 3 = 1 1 0 1 1 0 1 0

Step-4:
Again perform step 2, but this time while doing XOR operation after expanded permutation use key 2 instead of key 1.

Expand permutation is defined as - 4 1 2 3 2 3 4 1
After second ep = 0 1 0 1 0 1 0 1
After XOR operation with 2nd Key = 0 0 0 1 0 1 1 0
After second S-Boxes = 1 1 1 1

P4 is defined as - 2 4 3 1
After P4 = 1 1 1 1

After XOR operation with left nibble of after first part = 0 0 1 0
After second part = 0 0 1 0 1 0 1 0

l = 1 1 0 1  and r = 1 0 1 0

On the right half, we perform expanded permutation using EP table which converts 4 bits into 8 bits. Expand permutation is defined as –



EP(k1, k2, k3, k4) = (k4, k1, k2, k3, k2, k3, k4, k1)
After second ep = 0 1 0 1 0 1 0 1

We perform XOR operation using second key K2 with the output of expanded permutation.

Key-2 is - 0 1 0 0 0 0 1 1
(0 1 0 0 0 0 1 1) XOR (0 1 0 1 0 1 0 1) =  0 0 0 1 0 1 1 0
After XOR operation with 2nd Key = 0 0 0 1 0 1 1 0

Again we divide the output of XOR into 2 halves of 4 bit each.

l = 0 0 0 1  and r = 0 1 1 0

We take the first and fourth bit as row and the second and third bit as a column for our S boxes.

S0 = [1,0,3,2
      3,2,1,0
      0,2,1,3
      3,1,3,2]

S1 = [0,1,2,3
      2,0,1,3
      3,0,1,0
      2,1,0,3]

For l = 0 0 0 1
row = 01 = 1 , column = 00 = 0
S0 = 3 = 11

For r = 0 1 1 0
row = 00 = 0 , column = 11 = 3
S1 = 3 = 11

After first S-Boxes combining S0 and S1 = 1 1 1 1

S boxes gives a 2-bit output which we combine to get 4 bits and then perform permutation using the P4 table. P4 is defined as – 

P4(k1, k2, k3, k4) = (k2, k4, k3, k1)
After P4 = 1 1 1 1

We XOR the output of the P4 table with the left half of the initial permutation table i.e. IP table.

(1 1 0 1) XOR (1 1 1 1) = 0 0 1 0
After XOR operation with left nibble of after first part = 0 0 1 0

We combine both halves i.e. right half of initial permutation and output of ip.

Combine 1 0 1 0 and 0 0 1 0
After combine = 0 0 1 0 1 0 1 0
After second part = 0 0 1 0 1 0 1 0

Step-5:
Perform inverse initial permutation. The output of this table is the cipher text of 8 bit.

Output of step 4 : 0 0 1 0 1 0 1 0

Inverse Initial permutation is defined as –

IP-1(k1, k2, k3, k4, k5, k6, k7, k8) = (k4, k1, k3, k5, k7, k2, k8, k6)

8-bit Cipher Text will be = 0 0 1 1 1 0 0 0 

Java




/*package whatever //do not write package name here */
 
import java.io.*;
 
public class GFG {
    // int key[]= {0,0,1,0,0,1,0,1,1,1};
    int key[] = {
        1, 0, 1, 0, 0, 0, 0, 0, 1, 0
    }; // extra example for checking purpose
    int P10[] = { 3, 5, 2, 7, 4, 10, 1, 9, 8, 6 };
    int P8[] = { 6, 3, 7, 4, 8, 5, 10, 9 };
 
    int key1[] = new int[8];
    int key2[] = new int[8];
 
    int[] IP = { 2, 6, 3, 1, 4, 8, 5, 7 };
    int[] EP = { 4, 1, 2, 3, 2, 3, 4, 1 };
    int[] P4 = { 2, 4, 3, 1 };
    int[] IP_inv = { 4, 1, 3, 5, 7, 2, 8, 6 };
 
    int[][] S0 = { { 1, 0, 3, 2 },
                   { 3, 2, 1, 0 },
                   { 0, 2, 1, 3 },
                   { 3, 1, 3, 2 } };
    int[][] S1 = { { 0, 1, 2, 3 },
                   { 2, 0, 1, 3 },
                   { 3, 0, 1, 0 },
                   { 2, 1, 0, 3 } };
 
    //    this function basically generates the key(key1 and
    //key2)     using P10 and P8 with (1 and 2)left shifts
 
    void key_generation()
    {
        int key_[] = new int[10];
 
        for (int i = 0; i < 10; i++) {
            key_[i] = key[P10[i] - 1];
        }
 
        int Ls[] = new int[5];
        int Rs[] = new int[5];
 
        for (int i = 0; i < 5; i++) {
            Ls[i] = key_[i];
            Rs[i] = key_[i + 5];
        }
 
        int[] Ls_1 = shift(Ls, 1);
        int[] Rs_1 = shift(Rs, 1);
 
        for (int i = 0; i < 5; i++) {
            key_[i] = Ls_1[i];
            key_[i + 5] = Rs_1[i];
        }
 
        for (int i = 0; i < 8; i++) {
            key1[i] = key_[P8[i] - 1];
        }
 
        int[] Ls_2 = shift(Ls, 2);
        int[] Rs_2 = shift(Rs, 2);
 
        for (int i = 0; i < 5; i++) {
            key_[i] = Ls_2[i];
            key_[i + 5] = Rs_2[i];
        }
 
        for (int i = 0; i < 8; i++) {
            key2[i] = key_[P8[i] - 1];
        }
 
        System.out.println("Your Key-1 :");
 
        for (int i = 0; i < 8; i++)
            System.out.print(key1[i] + " ");
 
        System.out.println();
        System.out.println("Your Key-2 :");
 
        for (int i = 0; i < 8; i++)
            System.out.print(key2[i] + " ");
    }
 
    //    this function is use full for shifting(circular) the
    //array n position towards left
 
    int[] shift(int[] ar, int n)
    {
        while (n > 0) {
            int temp = ar[0];
            for (int i = 0; i < ar.length - 1; i++) {
                ar[i] = ar[i + 1];
            }
            ar[ar.length - 1] = temp;
            n--;
        }
        return ar;
    }
 
    //    this is main encryption function takes plain text as
    //input     uses another functions and returns the array of
    //cipher text
 
    int[] encryption(int[] plaintext)
    {
        int[] arr = new int[8];
 
        for (int i = 0; i < 8; i++) {
            arr[i] = plaintext[IP[i] - 1];
        }
        int[] arr1 = function_(arr, key1);
 
        int[] after_swap = swap(arr1, arr1.length / 2);
 
        int[] arr2 = function_(after_swap, key2);
 
        int[] ciphertext = new int[8];
 
        for (int i = 0; i < 8; i++) {
            ciphertext[i] = arr2[IP_inv[i] - 1];
        }
 
        return ciphertext;
    }
 
    // decimal to binary string 0-3
 
    String binary_(int val)
    {
        if (val == 0)
            return "00";
        else if (val == 1)
            return "01";
        else if (val == 2)
            return "10";
        else
            return "11";
    }
 
    //    this function is doing core things like expansion
    //    then xor with desired key then S0 and S1
    //substitution     P4 permutation and again xor     we have used
    //this function 2 times(key-1 and key-2) during
    //encryption and     2 times(key-2 and key-1) during
    //decryption
 
    int[] function_(int[] ar, int[] key_)
    {
 
        int[] l = new int[4];
        int[] r = new int[4];
 
        for (int i = 0; i < 4; i++) {
            l[i] = ar[i];
            r[i] = ar[i + 4];
        }
 
        int[] ep = new int[8];
 
        for (int i = 0; i < 8; i++) {
            ep[i] = r[EP[i] - 1];
        }
 
        for (int i = 0; i < 8; i++) {
            ar[i] = key_[i] ^ ep[i];
        }
 
        int[] l_1 = new int[4];
        int[] r_1 = new int[4];
 
        for (int i = 0; i < 4; i++) {
            l_1[i] = ar[i];
            r_1[i] = ar[i + 4];
        }
 
        int row, col, val;
 
        row = Integer.parseInt("" + l_1[0] + l_1[3], 2);
        col = Integer.parseInt("" + l_1[1] + l_1[2], 2);
        val = S0[row][col];
        String str_l = binary_(val);
 
        row = Integer.parseInt("" + r_1[0] + r_1[3], 2);
        col = Integer.parseInt("" + r_1[1] + r_1[2], 2);
        val = S1[row][col];
        String str_r = binary_(val);
 
        int[] r_ = new int[4];
        for (int i = 0; i < 2; i++) {
            char c1 = str_l.charAt(i);
            char c2 = str_r.charAt(i);
            r_[i] = Character.getNumericValue(c1);
            r_[i + 2] = Character.getNumericValue(c2);
        }
        int[] r_p4 = new int[4];
        for (int i = 0; i < 4; i++) {
            r_p4[i] = r_[P4[i] - 1];
        }
 
        for (int i = 0; i < 4; i++) {
            l[i] = l[i] ^ r_p4[i];
        }
 
        int[] output = new int[8];
        for (int i = 0; i < 4; i++) {
            output[i] = l[i];
            output[i + 4] = r[i];
        }
        return output;
    }
 
    //    this function swaps the nibble of size n(4)
 
    int[] swap(int[] array, int n)
    {
        int[] l = new int[n];
        int[] r = new int[n];
 
        for (int i = 0; i < n; i++) {
            l[i] = array[i];
            r[i] = array[i + n];
        }
 
        int[] output = new int[2 * n];
        for (int i = 0; i < n; i++) {
            output[i] = r[i];
            output[i + n] = l[i];
        }
 
        return output;
    }
 
    //    this is main decryption function
    //    here we have used all previously defined function
    //    it takes cipher text as input and returns the array
    //of     decrypted text
 
    int[] decryption(int[] ar)
    {
        int[] arr = new int[8];
 
        for (int i = 0; i < 8; i++) {
            arr[i] = ar[IP[i] - 1];
        }
 
        int[] arr1 = function_(arr, key2);
 
        int[] after_swap = swap(arr1, arr1.length / 2);
 
        int[] arr2 = function_(after_swap, key1);
 
        int[] decrypted = new int[8];
 
        for (int i = 0; i < 8; i++) {
            decrypted[i] = arr2[IP_inv[i] - 1];
        }
 
        return decrypted;
    }
 
    public static void main(String[] args)
    {
 
        GFG obj = new GFG();
 
        obj.key_generation(); // call to key generation
                              // function
 
        // int []plaintext= {1,0,1,0,0,1,0,1};
        int[] plaintext = {
            1, 0, 0, 1, 0, 1, 1, 1
        }; // extra example for checking purpose
 
        System.out.println();
        System.out.println("Your plain Text is :");
        for (int i = 0; i < 8; i++) // printing the
                                    // plaintext
            System.out.print(plaintext[i] + " ");
 
        int[] ciphertext = obj.encryption(plaintext);
 
        System.out.println();
        System.out.println(
            "Your cipher Text is :"); // printing the cipher
                                      // text
        for (int i = 0; i < 8; i++)
            System.out.print(ciphertext[i] + " ");
 
        int[] decrypted = obj.decryption(ciphertext);
 
        System.out.println();
        System.out.println(
            "Your decrypted Text is :"); // printing the
                                         // decrypted text
        for (int i = 0; i < 8; i++)
            System.out.print(decrypted[i] + " ");
    }
}
 
//Omkar Varhadi
Output
Your Key-1 :
1 0 1 0 0 1 0 0 
Your Key-2 :
0 1 0 0 0 0 1 1 
Your plain Text is :
1 0 0 1 0 1 1 1 
Your cipher Text is :
0 0 1 1 1 0 0 0 
Your decrypted Text is :
1 0 0 1 0 1 1 1 

Attention reader! Don’t stop learning now. Get hold of all the important CS Theory concepts for SDE interviews with the CS Theory Course at a student-friendly price and become industry ready.

 




My Personal Notes arrow_drop_up