Signed Networks in Social Networks
Prerequisite: Introduction to Social Networks
In Social Networks, Network is of 2 types- Unsigned Network and Signed Network. In the unsigned network, there are no signs between any nodes, and in the signed network, there is always a sign between 2 nodes either + or -. The ‘+’ sign indicates friendship between 2 nodes and the ‘-‘ sign indicates enmity between 2 nodes.
Our task is to create a signed network on N nodes using python language.
Approach:
- Create a graph and add nodes to it.
- Add every possible edge and assign a sign to it.
- Get a list of all possible triangles in a network.
- Store the sign details of all the triangles in the network.
- Count the total number of the unstable triangle in the network
- Now take an unstable triangle from the list and make it stable.
- Again count a number of the unstable triangles.
- Repeat steps 6 and 7 until there is no unstable triangle.
- Now form a coalition(friend nodes in coalition 1 with red color and enemy nodes in other coalition with blue color) and display the graph.
Below is the implementation.
Python3
import networkx as nx import matplotlib.pyplot as plt import random import itertools def get_signs_of_graph(g, tris_list): # eg-['A-B','B-C','C-A'] all_signs = [] for i in range ( len (tris_list)): t = [] t.append(g[tris_list[i][ 0 ]][tris_list[i][ 1 ]][ 'sign' ]) t.append(g[tris_list[i][ 1 ]][tris_list[i][ 2 ]][ 'sign' ]) t.append(g[tris_list[i][ 2 ]][tris_list[i][ 0 ]][ 'sign' ]) all_signs.append(t) return all_signs def unstablecount(all_signs): stable = 0 unstable = 0 for i in range ( len (all_signs)): if (((all_signs[i]).count( '+' )) = = 1 or ((all_signs[i]).count( '+' )) = = 3 ): stable + = 1 unstable = len (all_signs) - stable return unstable def move_graph_to_stable(g, tris_list, all_signs): found_unstable = False ran = 0 while (found_unstable = = False ): ran = random.randint( 0 , len (tris_list) - 1 ) if (all_signs[ran].count( '+' ) % 2 = = 0 ): found_unstable = True else : continue r = random.randint( 1 , 3 ) if (all_signs[ran].count( '+' ) = = 2 ): if (r = = 1 ): if (g[tris_list[ran][ 0 ]][tris_list[ran][ 1 ]][ 'sign' ] = = '+' ): g[tris_list[ran][ 0 ]][tris_list[ran][ 1 ]][ 'sign' ] = '-' else : g[tris_list[ran][ 0 ]][tris_list[ran][ 1 ]][ 'sign' ] = '+' elif (r = = 2 ): if (g[tris_list[ran][ 1 ]][tris_list[ran][ 2 ]][ 'sign' ] = = '+' ): g[tris_list[ran][ 1 ]][tris_list[ran][ 2 ]][ 'sign' ] = '-' else : g[tris_list[ran][ 1 ]][tris_list[ran][ 2 ]][ 'sign' ] = '+' else : if (g[tris_list[ran][ 0 ]][tris_list[ran][ 2 ]][ 'sign' ] = = '+' ): g[tris_list[ran][ 0 ]][tris_list[ran][ 2 ]][ 'sign' ] = '-' else : g[tris_list[ran][ 0 ]][tris_list[ran][ 2 ]][ 'sign' ] = '+' else : if (r = = 1 ): g[tris_list[ran][ 0 ]][tris_list[ran][ 1 ]][ 'sign' ] = '+' elif (r = = 2 ): g[tris_list[ran][ 1 ]][tris_list[ran][ 2 ]][ 'sign' ] = '+' else : g[tris_list[ran][ 0 ]][tris_list[ran][ 2 ]][ 'sign' ] = '+' return g def Coalition(g): f = [] s = [] nodes = g.nodes() r = random.choice( list (nodes)) f.append(r) processed_nodes = [] to_be_processed = [r] for each in to_be_processed: if each not in processed_nodes: neigh = list (g.neighbors(each)) for i in range ( len (neigh)): if (g[each][neigh[i]][ 'sign' ] = = '+' ): if (neigh[i] not in f): f.append(neigh[i]) if (neigh[i] not in to_be_processed): to_be_processed.append(neigh[i]) elif (g[each][neigh[i]][ 'sign' ] = = '-' ): if (neigh[i] not in s): s.append(neigh[i]) processed_nodes.append(neigh[i]) processed_nodes.append(each) return f, s # 1.Create graph g = nx.Graph() n = 8 g.add_nodes_from( range ( 1 , n + 1 )) map = { 1 : "A" , 2 : "B" , 3 : "C" , 4 : "D" , 5 : "E" , 6 : "F" , 7 : "G" , 8 : "H" , 9 : "I" , 10 : "J" } signs = [ '+' , '-' ] g = nx.relabel_nodes(g, map ) # 2.Add every possible edge and assign sign for i in g.nodes(): for j in g.nodes(): if (i ! = j): g.add_edge(i, j, sign = random.choice(signs)) # 3.Display graph edge_attributes = nx.get_edge_attributes(g, 'sign' ) pos = nx.circular_layout(g) nx.draw(g, pos, node_size = 3000 , with_labels = 1 ) nx.draw_networkx_edge_labels( g, pos, edge_labels = edge_attributes, font_size = 20 , font_color = 'blue' ) plt.show() # 4.1.Get list of all the triangles in network nodes = g.nodes() tris_list = [ list (x) for x in itertools.combinations(nodes, 3 )] # 4.2.Store the sign details of all the triangles all_signs = get_signs_of_graph(g, tris_list) # 4.3.Count total number of unstable triangle # in the network unstable = unstablecount(all_signs) # 5 chose the triangle in the graph that is unstable # and make the triangle stable unstable_track = [unstable] while (unstable ! = 0 ): g = move_graph_to_stable(g, tris_list, all_signs) all_signs = get_signs_of_graph(g, tris_list) unstable = unstablecount(all_signs) unstable_track.append(unstable) # 6 Form the coalition first, second = Coalition(g) print (first) print (second) edge_labels = nx.get_edge_attributes(g, 'sign' ) pos = nx.circular_layout(g) nx.draw_networkx_nodes(g, pos, nodelist = first, node_color = 'red' , node_size = 4000 ) nx.draw_networkx_nodes(g, pos, nodelist = second, node_color = 'blue' , node_size = 4000 ) nx.draw_networkx_labels(g, pos) nx.draw_networkx_edges(g, pos) nx.draw_networkx_edge_labels(g, pos, edge_labels = edge_labels, font_color = "red" ) plt.show() |
Output:
['G', 'B', 'C', 'H'] ['A', 'D', 'E', 'F']

Initial Signed Network without coalition

Final Signed Network with coalition
Please Login to comment...