Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Sierpinski triangle

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Sierpinski triangle is a fractal and attractive fixed set with the overall shape of an equilateral triangle. It subdivides recursively into smaller triangles. 
 

Sierpinski_triangle1

Examples : 

Input : n = 4
Output :
   * 
  * * 
 *   * 
* * * * 

Input : n = 8
Output :
       * 
      * * 
     *   * 
    * * * * 
   *       * 
  * *     * * 
 *   *   *   * 
* * * * * * * * 

 

Approach : 
 

Sierpinski Triangle will be constructed from an equilateral triangle by repeated removal of triangular subsets. 
Steps for Construction : 
1 . Take any equilateral triangle . 
2 . Divide it into 4 smaller congruent triangle and remove the central triangle . 
3 . Repeat step 2 for each of the remaining smaller triangles forever. 

Below is the program to implement Sierpinski triangle 
 

C++




// C++ program to print sierpinski triangle.
#include <bits/stdc++.h>
using namespace std;
  
void printSierpinski(int n)
{
    for (int y = n - 1; y >= 0; y--) {
  
        // printing space till
        // the value of y
        for (int i = 0; i < y; i++) {
            cout<<" ";
        }
  
        // printing '*'
        for (int x = 0; x + y < n; x++) {
  
        // printing '*' at the appropriate position
        // is done by the and value of x and y
        // wherever value is 0 we have printed '*'
        if(x & y)
            cout<<" "<<" ";
        else
            cout<<"* ";
        }
  
        cout<<endl;
    }
}
  
// Driver code
int main()
{
    int n = 16;
  
    // Function calling
    printSierpinski(n);
  
    return 0;
}

Java




// Java program to print 
// sierpinski triangle.
import java.util.*;
import java.io.*;
  
class GFG 
{
    static void printSierpinski(int n)
    {
        for (int y = n - 1; y >= 0; y--) {
  
            // printing space till
            // the value of y
            for (int i = 0; i < y; i++) {
                System.out.print(" ");
            }
  
            // printing '*'
            for (int x = 0; x + y < n; x++) {
  
                // printing '*' at the appropriate
                // position is done by the and 
                // value of x and y wherever value
                // is 0 we have printed '*'
                if ((x & y) != 0)
                    System.out.print(" "
                                    + " ");
                else
                    System.out.print("* ");
            }
  
            System.out.print("\n");
        }
    }
  
    // Driver code
    public static void main(String args[])
    {
        int n = 16;
  
        // Function calling
        printSierpinski(n);
    }
}
  
// This code is contributed by Sahil_Bansall

Python3




# Python 3 program to print 
# sierpinski triangle.
  
def printSierpinski( n) :
      
    y = n - 1
    while(y >= 0) :
          
        # printing space till
        # the value of y
        i = 0
        while(i < y ):
            print(" ",end="")
            i = i + 1
  
        # printing '*'
        x = 0
        while(x + y < n ):
  
            # printing '*' at the appropriate
            # position is done by the and 
            # value of x and y wherever value
            # is 0 we have printed '*'
            if ((x & y) != 0) :
                print(" ", end = " ")
            else :
                print("* ", end = "")
            x =x + 1
          
        print()
        y = y - 1
          
# Driver code
n = 16
  
# Function calling
printSierpinski(n)
  
  
# This code is contributed by Nikita Tiwari.

C#




// C# program to print
// sierpinski triangle.
using System;
  
class GFG {
    static void printSierpinski(int n)
    {
        for (int y = n - 1; y >= 0; y--) {
  
            // printing space till
            // the value of y
            for (int i = 0; i < y; i++) {
                Console.Write(" ");
            }
  
            // printing '*'
            for (int x = 0; x + y < n; x++) {
  
                // printing '*' at the appropriate
                // position is done by the and
                // value of x and y wherever value
                // is 0 we have printed '*'
                if ((x & y) != 0)
                    Console.Write(" " + " ");
                else
                    Console.Write("* ");
            }
  
            Console.WriteLine();
        }
    }
  
    // Driver code
    public static void Main()
    {
        int n = 16;
  
        // Function calling
        printSierpinski(n);
    }
}
  
// This code is contributed by vt_m

PHP




<?php
// PHP implementation to 
// print sierpinski triangle.
  
function printSierpinski($n)
{
    for ($y = $n - 1; $y >= 0; $y--) 
    {
  
        // printing space till
        // the value of y
        for ($i = 0; $i < $y; $i++)
        {
            echo " ";
        }
  
        // printing '*'
        for ($x = 0; $x + $y < $n; $x++) 
        {
  
        // printing '*' at the appropriate 
        // position is done by the and value 
        // of x and y wherever value is 0 we 
        // have printed '*'
        if($x & $y)
            echo"  ";
        else
            echo"* ";
        }
  
        echo "\n";
    }
}
  
// Driver code
$n = 16;
printSierpinski($n);
  
// This code is contributed by Mithun Kumar
?>

Javascript




<script>
  
// javascript program to print
// sierpinski triangle.
  
function printSierpinski(n)
{
    for (var y = n - 1; y >= 0; y--) {
  
        // printing space till
        // the value of y
        for (var i = 0; i < y; i++) {
            document.write(" ");
        }
  
        // printing '*'
        for (var x = 0; x + y < n; x++) {
  
            // printing '*' at the appropriate
            // position is done by the and 
            // value of x and y wherever value
            // is 0 we have printed '*'
            if ((x & y) != 0)
                document.write("   ");
            else
                document.write("* ");
        }
  
        document.write("<br>");
    }
}
  
// Driver code
var n = 16;
  
// Function calling
printSierpinski(n);
  
  
// This code contributed by Princi Singh
</script>

Output : 
 

               * 
              * * 
             *   * 
            * * * * 
           *       * 
          * *     * * 
         *   *   *   * 
        * * * * * * * * 
       *               * 
      * *             * * 
     *   *           *   * 
    * * * *         * * * * 
   *       *       *       * 
  * *     * *     * *     * * 
 *   *   *   *   *   *   *   * 
* * * * * * * * * * * * * * * * 

Time complexity: O(n2
Auxiliary space: O(1)

References : Wiki 


My Personal Notes arrow_drop_up
Last Updated : 20 Feb, 2023
Like Article
Save Article
Similar Reads
Related Tutorials