Side of a regular n-sided polygon circumscribed in a circle

Given two integers r and n where n is the number of sides of a regular polygon and r is the radius of the circle this polygon is circumscribed in. The task is to find the length of the side of polygon.

Examples:

Input: n = 5, r = 11
Output: 12.9256

Input: n = 3, r = 5
Output: 8.6576

Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: Consider the image above and let angle AOB be theta then theta = 360 / n.
In right angled triangle , angle ACO = 90 degrees and angle AOC = theta / 2.
So, AC = OA * sin(theta / 2) = r * sin(theta / 2)
Therefore, side of the polygon, AB = 2 * AC i.e. 2 * r * sin(theta / 2).

Below is the implementation of the above approach:

 `// C++ implementation of the approach ` `#include ` `using` `namespace` `std; ` ` `  `// Function to calculate the side of the polygon ` `// circumscribed in a circle ` `float` `calculateSide(``float` `n, ``float` `r) ` `{ ` `    ``float` `theta, theta_in_radians; ` ` `  `    ``theta = 360 / n; ` `    ``theta_in_radians = theta * 3.14 / 180; ` ` `  `    ``return` `2 * r * ``sin``(theta_in_radians / 2); ` `} ` ` `  `// Driver Code ` `int` `main() ` `{ ` ` `  `    ``// Total sides of the polygon ` `    ``float` `n = 3; ` ` `  `    ``// Radius of the circumscribing circle ` `    ``float` `r = 5; ` ` `  `    ``cout << calculateSide(n, r); ` `} `

 `// Java  implementation of the approach ` `import` `java.lang.Math; ` `import` `java.io.*; ` ` `  `class` `GFG { ` `     `  `// Function to calculate the side of the polygon ` `// circumscribed in a circle ` `static` `double` `calculateSide(``double`  `n, ``double` `r) ` `{ ` `    ``double` `theta, theta_in_radians; ` ` `  `    ``theta = ``360` `/ n; ` `    ``theta_in_radians = theta * ``3.14` `/ ``180``; ` ` `  `    ``return` `2` `* r * Math.sin(theta_in_radians / ``2``); ` `} ` ` `  `// Driver Code ` `    ``public` `static` `void` `main (String[] args) { ` ` `  `    ``// Total sides of the polygon ` `    ``double` `n = ``3``; ` ` `  `    ``// Radius of the circumscribing circle ` `    ``double` `r = ``5``; ` `    ``System.out.println (calculateSide(n, r)); ` `    ``} ` `//This code is contributed by akt_mit     ` `} `

 `# Python 3 implementation of the approach ` `from` `math ``import` `sin ` ` `  `# Function to calculate the side of  ` `# the polygon circumscribed in a circle ` `def` `calculateSide(n, r): ` `    ``theta ``=` `360` `/` `n ` `    ``theta_in_radians ``=` `theta ``*` `3.14` `/` `180` ` `  `    ``return` `2` `*` `r ``*` `sin(theta_in_radians ``/` `2``) ` ` `  `# Driver Code ` `if` `__name__ ``=``=` `'__main__'``: ` `     `  `    ``# Total sides of the polygon ` `    ``n ``=` `3` ` `  `    ``# Radius of the circumscribing circle ` `    ``r ``=` `5` ` `  `    ``print``(``'{0:.5}'``.``format``(calculateSide(n, r))) ` ` `  `# This code is contributed by ` `# Sanjit_Prasad `

 `// C# implementation of the approach  ` ` `  `using` `System; ` ` `  `class` `GFG {  ` `         `  `    ``// Function to calculate the side of the polygon  ` `    ``// circumscribed in a circle  ` `    ``static` `double` `calculateSide(``double` `n, ``double` `r)  ` `    ``{  ` `        ``double` `theta, theta_in_radians;  ` `     `  `        ``theta = 360 / n;  ` `        ``theta_in_radians = theta * 3.14 / 180;  ` `     `  `        ``return` `Math.Round(2 * r * Math.Sin(theta_in_radians / 2),4);  ` `    ``}  ` ` `  `        ``// Driver Code  ` `    ``public` `static` `void` `Main () {  ` ` `  `    ``// Total sides of the polygon  ` `    ``double` `n = 3;  ` ` `  `    ``// Radius of the circumscribing circle  ` `    ``double` `r = 5;  ` `     `  `    ``Console.WriteLine(calculateSide(n, r));  ` `    ``}  ` `    ``// This code is contributed by Ryuga ` `}  `

 ` `

Output:
```8.6576
```

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :