Given two integers r and n where n is the number of sides of a regular polygon and r is the radius of the circle this polygon is circumscribed in. The task is to find the length of the side of polygon.

Examples:
Input: n = 5, r = 11
Output: 12.9256
Input: n = 3, r = 5
Output: 8.6576
Approach: Consider the image above and let angle AOB be theta then theta = 360 / n.
In right angled triangle
, angle ACO = 90 degrees and angle AOC = theta / 2.
So, AC = OA * sin(theta / 2) = r * sin(theta / 2)
Therefore, side of the polygon, AB = 2 * AC i.e. 2 * r * sin(theta / 2).
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
float calculateSide( float n, float r)
{
float theta, theta_in_radians;
theta = 360 / n;
theta_in_radians = theta * 3.14 / 180;
return 2 * r * sin (theta_in_radians / 2);
}
int main()
{
float n = 3;
float r = 5;
cout << calculateSide(n, r);
}
|
Java
import java.lang.Math;
import java.io.*;
class GFG {
static double calculateSide( double n, double r)
{
double theta, theta_in_radians;
theta = 360 / n;
theta_in_radians = theta * 3.14 / 180 ;
return 2 * r * Math.sin(theta_in_radians / 2 );
}
public static void main (String[] args) {
double n = 3 ;
double r = 5 ;
System.out.println (calculateSide(n, r));
}
}
|
Python3
from math import sin
def calculateSide(n, r):
theta = 360 / n
theta_in_radians = theta * 3.14 / 180
return 2 * r * sin(theta_in_radians / 2 )
if __name__ = = '__main__' :
n = 3
r = 5
print ( '{0:.5}' . format (calculateSide(n, r)))
|
C#
using System;
class GFG {
static double calculateSide( double n, double r)
{
double theta, theta_in_radians;
theta = 360 / n;
theta_in_radians = theta * 3.14 / 180;
return Math.Round(2 * r * Math.Sin(theta_in_radians / 2),4);
}
public static void Main () {
double n = 3;
double r = 5;
Console.WriteLine(calculateSide(n, r));
}
}
|
PHP
<?php
function calculateSide( $n , $r )
{
$theta ; $theta_in_radians ;
$theta = 360 / $n ;
$theta_in_radians = $theta * 3.14 / 180;
return 2 * $r * sin( $theta_in_radians / 2);
}
$n = 3;
$r = 5;
echo calculateSide( $n , $r );
?>
|
Javascript
<script>
function calculateSide( n , r)
{
var theta, theta_in_radians;
theta = 360 / n;
theta_in_radians = theta * 3.14 / 180;
return 2 * r * Math.sin(theta_in_radians / 2);
}
var n = 3;
var r = 5;
document.write(calculateSide(n, r).toFixed(5));
</script>
|
Time Complexity: O(1), since there is no loop or recursion.
Auxiliary Space: O(1), since no extra space has been taken.
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
24 Jun, 2022
Like Article
Save Article