Skip to content
Related Articles

Related Articles

Shortest subarray to be removed to make all Array elements unique
  • Difficulty Level : Hard
  • Last Updated : 14 Sep, 2020

Given an array arr[] containing N elements, the task is to remove a subarray of minimum possible length from the given array such that all remaining elements are pairwise distinct. Print the minimum possible length of the subarray.
Examples:

Input: N = 5, arr[] = {1, 2, 1, 2, 3} 
Output:
Explanation: 
Remove the sub array {2, 1} to make the elements distinct. 

Input: N = 5, arr[] = {1, 2, 3, 4, 5} 
Output:
Explanation: 
Elements are already distinct.

Naive Approach: The naive approach for this problem is to simply check for all the possible subarrays and find the length of the smallest subarray after removal of which all the elements in the array become pairwise distinct. 

Time complexity: O(N3) 



Efficient Approach:

  • Let ans be the length of the minimum subarray that on removing from the given array, makes the elements of the array unique.
  • We can easily observe that if all array elements become distinct after removing a subarray of length ans, then this condition is also true for all values greater than ans.
  • This means that the solution for this problem is a monotonically increasing function and we can apply binary search on the answer.
  • Now, for a particular length K of subarray, we can check if elements of prefix and suffix of all sub arrays of length K are pairwise distinct or not.
  • We can do this by using a sliding window technique.
  • Use a hash map to store the frequencies of elements in prefix and suffix, on moving the window forward, increment frequency of the last element of prefix and decrement frequency of the first element of suffix.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to make array elements 
// pairwise distinct by removing at most 
// one subarray of minimum length 
  
#include <bits/stdc++.h> 
using namespace std; 
  
// Function to check if elements of 
// Prefix and suffix of each sub array 
// of size K are pairwise distinct or not 
bool check(int a[], int n, int k) 
    // Hash map to store frequencies of 
    // elements of prefix and suffix 
    map<int, int> m; 
  
    // Variable to store number of 
    // occurrences of an element other 
    // than one 
    int extra = 0; 
  
    // Adding frequency of elements of suffix 
    // to hash for subarray starting from first 
    // index 
    // There is no prefix for this sub array 
    for (int i = k; i < n; i++) 
        m[a[i]]++; 
  
    // Counting extra elements in current Hash 
    // map 
    for (auto x : m) 
        extra += x.second - 1; 
  
    // If there are no extra elements return 
    // true 
    if (extra == 0) 
        return true
  
    // Check for remaining sub arrays 
  
    for (int i = 1; i + k - 1 < n; i++) { 
  
        // First element of suffix is now 
        // part of subarray which is being 
        // removed so, check for extra elements 
        if (m[a[i + k - 1]] > 1) 
            extra--; 
  
        // Decrement frequency of first 
        // element of the suffix 
        m[a[i + k - 1]]--; 
  
        // Increment frequency of last 
        // element of the prefix 
        m[a[i - 1]]++; 
  
        // Check for extra elements 
        if (m[a[i - 1]] > 1) 
            extra++; 
  
        // If there are no extra elements 
        // return true 
        if (extra == 0) 
            return true
    
  
    return false
  
// Function for calculating minimum 
// length of the subarray, which on 
// removing make all elements pairwise 
// distinct 
int minlength(int a[], int n) 
    // Possible range of length of subarray 
    int lo = 0, hi = n + 1; 
  
    int ans = 0; 
  
    // Binary search to find minimum ans 
    while (lo < hi) { 
  
        int mid = (lo + hi) / 2; 
  
        if (check(a, n, mid)) { 
            ans = mid; 
            hi = mid; 
        
        else
            lo = mid + 1; 
    
  
    return ans; 
  
// Driver code 
int main() 
    int a[5] = { 1, 2, 1, 2, 3 }; 
  
    int n = sizeof(a) / sizeof(int); 
  
    cout << minlength(a, n); 

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to make array elements 
// pairwise distinct by removing at most 
// one subarray of minimum length 
import java.util.*;
import java.lang.*;
  
class GFG{
      
// Function to check if elements of 
// Prefix and suffix of each sub array 
// of size K are pairwise distinct or not 
static boolean check(int a[], int n, int k) 
      
    // Hash map to store frequencies of 
    // elements of prefix and suffix 
    Map<Integer, Integer> m = new HashMap<>(); 
      
    // Variable to store number of 
    // occurrences of an element other 
    // than one 
    int extra = 0
      
    // Adding frequency of elements of suffix 
    // to hash for subarray starting from first 
    // index 
    // There is no prefix for this sub array 
    for(int i = k; i < n; i++) 
        m.put(a[i], m.getOrDefault(a[i], 0) + 1); 
      
    // Counting extra elements in current Hash 
    // map 
    for(Integer x : m.values()) 
        extra += x - 1
      
    // If there are no extra elements return 
    // true 
    if (extra == 0
        return true
      
    // Check for remaining sub arrays 
    for(int i = 1; i + k - 1 < n; i++)
    
          
        // First element of suffix is now 
        // part of subarray which is being 
        // removed so, check for extra elements 
        if (m.get(a[i + k - 1]) > 1
            extra--; 
          
        // Decrement frequency of first 
        // element of the suffix 
        m.put(a[i + k - 1],
        m.get(a[i + k - 1]) - 1); 
          
        // Increment frequency of last 
        // element of the prefix 
        m.put(a[i - 1], m.get(a[i - 1]) + 1); 
          
        // Check for extra elements 
        if (m.get(a[i - 1]) > 1
            extra++; 
          
        // If there are no extra elements 
        // return true 
        if (extra == 0
            return true
    
    return false
      
// Function for calculating minimum 
// length of the subarray, which on 
// removing make all elements pairwise 
// distinct 
static int minlength(int a[], int n) 
      
    // Possible range of length of subarray 
    int lo = 0, hi = n + 1
      
    int ans = 0
      
    // Binary search to find minimum ans 
    while (lo < hi)
    
        int mid = (lo + hi) / 2
          
        if (check(a, n, mid))
        
            ans = mid; 
            hi = mid; 
        
        else
            lo = mid + 1
    
    return ans; 
}
  
// Driver Code
public static void main (String[] args) 
{
    int a[] = { 1, 2, 1, 2, 3 }; 
      
    int n = a.length; 
      
    System.out.println(minlength(a, n)); 
}
}
  
// This code is contributed by offbeat

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to make array elements 
# pairwise distinct by removing at most 
# one subarray of minimum length 
from collections import defaultdict 
  
# Function to check if elements of 
# Prefix and suffix of each sub array 
# of size K are pairwise distinct or not 
def check(a, n, k): 
  
    # Hash map to store frequencies of 
    # elements of prefix and suffix 
    m = defaultdict(int
  
    # Variable to store number of 
    # occurrences of an element other 
    # than one 
    extra = 0
  
    # Adding frequency of elements of suffix 
    # to hash for subarray starting from first 
    # index 
    # There is no prefix for this sub array 
    for i in range(k, n): 
        m[a[i]] += 1
  
    # Counting extra elements in current Hash 
    # map 
    for x in m: 
        extra += m[x] - 1
  
    # If there are no extra elements return 
    # true 
    if (extra == 0): 
        return True
  
    # Check for remaining sub arrays 
    for i in range(1, i + k - 1 < n): 
  
        # First element of suffix is now 
        # part of subarray which is being 
        # removed so, check for extra elements 
        if (m[a[i + k - 1]] > 1): 
            extra -= 1
  
        # Decrement frequency of first 
        # element of the suffix 
        m[a[i + k - 1]] -= 1
  
        # Increment frequency of last 
        # element of the prefix 
        m[a[i - 1]] += 1
  
        # Check for extra elements 
        if (m[a[i - 1]] > 1): 
            extra += 1
  
        # If there are no extra elements 
        # return true 
        if (extra == 0): 
            return True
      
    return False
  
# Function for calculating minimum 
# length of the subarray, which on 
# removing make all elements pairwise 
# distinct 
def minlength(a, n): 
  
    # Possible range of length of subarray 
    lo = 0
    hi = n + 1
  
    ans = 0
  
    # Binary search to find minimum ans 
    while (lo < hi): 
        mid = (lo + hi) // 2
  
        if (check(a, n, mid)): 
            ans = mid 
            hi = mid 
        else
            lo = mid + 1
  
    return ans 
  
# Driver code 
if __name__ == "__main__"
  
    a = [ 1, 2, 1, 2, 3
    n = len(a) 
  
    print(minlength(a, n)) 
  
# This code is contributed by chitranayal 

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to make array elements 
// pairwise distinct by removing at most 
// one subarray of minimum length 
using System;
using System.Collections.Generic;
  
class GFG{
      
// Function to check if elements of 
// Prefix and suffix of each sub array 
// of size K are pairwise distinct or not 
static bool check(int []a, int n, int k) 
      
    // Hash map to store frequencies of 
    // elements of prefix and suffix 
    Dictionary<int
               int> m = new Dictionary<int
                                       int>(); 
      
    // Variable to store number of 
    // occurrences of an element other 
    // than one 
    int extra = 0; 
      
    // Adding frequency of elements of suffix 
    // to hash for subarray starting from first 
    // index 
    // There is no prefix for this sub array 
    for(int i = k; i < n; i++) 
        if(m.ContainsKey(a[i]))
            m[a[i]] = m[a[i]] + 1;
        else
            m.Add(a[i], 1); 
      
    // Counting extra elements in current Hash 
    // map 
    foreach(int x in m.Keys) 
        extra += m[x] - 1; 
      
    // If there are no extra elements return 
    // true 
    if (extra == 0) 
        return true
      
    // Check for remaining sub arrays 
    for(int i = 1; i + k - 1 < n; i++)
    
          
        // First element of suffix is now 
        // part of subarray which is being 
        // removed so, check for extra elements 
        if (m[a[i + k - 1]] > 1) 
            extra--; 
          
        // Decrement frequency of first 
        // element of the suffix 
        m[a[i + k - 1]] = m[a[i + k - 1]] - 1; 
          
        // Increment frequency of last 
        // element of the prefix 
        m[a[i - 1]] = m[a[i - 1]] + 1; 
          
        // Check for extra elements 
        if (m[a[i - 1]] > 1) 
            extra++; 
          
        // If there are no extra elements 
        // return true 
        if (extra == 0) 
            return true
    
    return false
      
// Function for calculating minimum 
// length of the subarray, which on 
// removing make all elements pairwise 
// distinct 
static int minlength(int []a, int n) 
      
    // Possible range of length of subarray 
    int lo = 0, hi = n + 1; 
      
    int ans = 0; 
      
    // Binary search to find minimum ans 
    while (lo < hi)
    
        int mid = (lo + hi) / 2; 
          
        if (check(a, n, mid))
        
            ans = mid; 
            hi = mid; 
        
        else
            lo = mid + 1; 
    
    return ans; 
}
  
// Driver Code
public static void Main(String[] args) 
{
    int []a = { 1, 2, 1, 2, 3 }; 
    int n = a.Length; 
      
    Console.WriteLine(minlength(a, n)); 
}
}
  
// This code is contributed by Amit Katiyar 

chevron_right


Output: 

2

Time Complexity: O(N * log(N)), where N is the size of the array.
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up
Recommended Articles
Page :