Skip to content
Related Articles

Related Articles

Improve Article
Shortest path in a directed graph by Dijkstra’s algorithm
  • Difficulty Level : Hard
  • Last Updated : 30 Dec, 2020

Given a directed graph and a source vertex in the graph, the task is to find the shortest distance and path from source to target vertex in the given graph where edges are weighted (non-negative) and directed from parent vertex to source vertices.

Approach: 

  • Mark all vertices unvisited. Create a set of all unvisited vertices.
  • Assign zero distance value to source vertex and infinity distance value to all other vertices.
  • Set the source vertex as current vertex
  • For current vertex, consider all of its unvisited children and calculate their tentative distances through the current. (distance of current + weight of the corresponding edge) Compare the newly calculated distance to the current assigned value (can be infinity for some vertices) and assign the smaller one.
  • After considering all the unvisited children of the current vertex, mark the current as visited and remove it from the unvisited set.
  • Similarly, continue for all the vertex until all the nodes are visited.

Below is the implementation of the above approach:

C++




// C++ implementation to find the
// shortest path in a directed
// graph from source vertex to
// the destination vertex
 
#include <bits/stdc++.h>
#define infi 1000000000
using namespace std;
 
// Class of the node
class Node {
public:
    int vertexNumber;
 
    // Adjacency list that shows the
    // vertexNumber of child vertex
    // and the weight of the edge
    vector<pair<int, int> > children;
    Node(int vertexNumber)
    {
        this->vertexNumber = vertexNumber;
    }
 
    // Function to add the child for
    // the given node
    void add_child(int vNumber, int length)
    {
        pair<int, int> p;
        p.first = vNumber;
        p.second = length;
        children.push_back(p);
    }
};
 
// Function to find the distance of
// the node from the given source
// vertex to the destination vertex
vector<int> dijkstraDist(
    vector<Node*> g,
    int s, vector<int>& path)
{
    // Stores distance of each
    // vertex from source vertex
    vector<int> dist(g.size());
 
    // Boolean array that shows
    // whether the vertex 'i'
    // is visited or not
    bool visited[g.size()];
    for (int i = 0; i < g.size(); i++) {
        visited[i] = false;
        path[i] = -1;
        dist[i] = infi;
    }
    dist[s] = 0;
    path[s] = -1;
    int current = s;
 
    // Set of vertices that has
    // a parent (one or more)
    // marked as visited
    unordered_set<int> sett;
    while (true) {
 
        // Mark current as visited
        visited[current] = true;
        for (int i = 0;
             i < g[current]->children.size();
             i++) {
            int v = g[current]->children[i].first;
            if (visited[v])
                continue;
 
            // Inserting into the
            // visited vertex
            sett.insert(v);
            int alt
                = dist[current]
                  + g[current]->children[i].second;
 
            // Condition to check the distance
            // is correct and update it
            // if it is minimum from the previous
            // computed distance
            if (alt < dist[v]) {
                dist[v] = alt;
                path[v] = current;
            }
        }
        sett.erase(current);
        if (sett.empty())
            break;
 
        // The new current
        int minDist = infi;
        int index = 0;
 
        // Loop to update the distance
        // of the vertices of the graph
        for (int a: sett) {
            if (dist[a] < minDist) {
                minDist = dist[a];
                index = a;
            }
        }
        current = index;
    }
    return dist;
}
 
// Function to print the path
// from the source vertex to
// the destination vertex
void printPath(vector<int> path,
               int i, int s)
{
    if (i != s) {
 
        // Condition to check if
        // there is no path between
        // the vertices
        if (path[i] == -1) {
            cout << "Path not found!!";
            return;
        }
        printPath(path, path[i], s);
        cout << path[i] << " ";
    }
}
 
// Driver Code
int main()
{
    vector<Node*> v;
    int n = 4, s = 0, e = 5;
 
    // Loop to create the nodes
    for (int i = 0; i < n; i++) {
        Node* a = new Node(i);
        v.push_back(a);
    }
 
    // Creating directed
    // weighted edges
    v[0]->add_child(1, 1);
    v[0]->add_child(2, 4);
    v[1]->add_child(2, 2);
    v[1]->add_child(3, 6);
    v[2]->add_child(3, 3);
 
    vector<int> path(v.size());
    vector<int> dist
        = dijkstraDist(v, s, path);
 
    // Loop to print the distance of
    // every node from source vertex
    for (int i = 0; i < dist.size(); i++) {
        if (dist[i] == infi) {
            cout << i << " and " << s
                 << " are not connected"
                 << endl;
            continue;
        }
        cout << "Distance of " << i
             << "th vertex from source vertex "
             << s << " is: "
             << dist[i] << endl;
    }
    return 0;
}

Java




// Java implementation to find the
// shortest path in a directed
// graph from source vertex to
// the destination vertex
import java.util.ArrayList;
import java.util.HashSet;
import java.util.List;
import java.util.Set;
 
class Pair
{
    int first, second;
 
    public Pair(int first, int second)
    {
        this.first = first;
        this.second = second;
    }
}
 
class GFG{
 
static final int infi = 1000000000;
 
// Class of the node
static class Node
{
    int vertexNumber;
 
    // Adjacency list that shows the
    // vertexNumber of child vertex
    // and the weight of the edge
    List<Pair> children;
 
    Node(int vertexNumber)
    {
        this.vertexNumber = vertexNumber;
        children = new ArrayList<>();
    }
 
    // Function to add the child for
    // the given node
    void add_child(int vNumber, int length)
    {
        Pair p = new Pair(vNumber, length);
        children.add(p);
    }
}
 
// Function to find the distance of
// the node from the given source
// vertex to the destination vertex
static int[] dijkstraDist(List<Node> g,
                          int s, int[] path)
{
     
    // Stores distance of each
    // vertex from source vertex
    int[] dist = new int[g.size()];
 
    // Boolean array that shows
    // whether the vertex 'i'
    // is visited or not
    boolean[] visited = new boolean[g.size()];
    for(int i = 0; i < g.size(); i++)
    {
        visited[i] = false;
        path[i] = -1;
        dist[i] = infi;
    }
    dist[s] = 0;
    path[s] = -1;
    int current = s;
 
    // Set of vertices that has
    // a parent (one or more)
    // marked as visited
    Set<Integer> sett = new HashSet<>();
    while (true)
    {
         
        // Mark current as visited
        visited[current] = true;
        for(int i = 0;
                i < g.get(current).children.size();
                i++)
        {
            int v = g.get(current).children.get(i).first;
             
            if (visited[v])
                continue;
 
            // Inserting into the
            // visited vertex
            sett.add(v);
            int alt = dist[current] +
                     g.get(current).children.get(i).second;
 
            // Condition to check the distance
            // is correct and update it
            // if it is minimum from the previous
            // computed distance
            if (alt < dist[v])
            {
                dist[v] = alt;
                path[v] = current;
            }
        }
        sett.remove(current);
         
        if (sett.isEmpty())
            break;
 
        // The new current
        int minDist = infi;
        int index = 0;
 
        // Loop to update the distance
        // of the vertices of the graph
        for(int a : sett)
        {
            if (dist[a] < minDist)
            {
                minDist = dist[a];
                index = a;
            }
        }
        current = index;
    }
    return dist;
}
 
// Function to print the path
// from the source vertex to
// the destination vertex
void printPath(int[] path, int i, int s)
{
    if (i != s)
    {
         
        // Condition to check if
        // there is no path between
        // the vertices
        if (path[i] == -1)
        {
            System.out.println("Path not found!!");
            return;
        }
        printPath(path, path[i], s);
        System.out.print(path[i] + " ");
    }
}
 
// Driver Code
public static void main(String[] args)
{
    List<Node> v = new ArrayList<>();
    int n = 4, s = 0, e = 5;
 
    // Loop to create the nodes
    for(int i = 0; i < n; i++)
    {
        Node a = new Node(i);
        v.add(a);
    }
 
    // Creating directed
    // weighted edges
    v.get(0).add_child(1, 1);
    v.get(0).add_child(2, 4);
    v.get(1).add_child(2, 2);
    v.get(1).add_child(3, 6);
    v.get(2).add_child(3, 3);
 
    int[] path = new int[v.size()];
    int[] dist = dijkstraDist(v, s, path);
 
    // Loop to print the distance of
    // every node from source vertex
    for(int i = 0; i < dist.length; i++)
    {
        if (dist[i] == infi)
        {
            System.out.printf("%d and %d are not " +
                              "connected\n", i, s);
            continue;
        }
        System.out.printf("Distance of %dth vertex " +
                          "from source vertex %d is: %d\n",
                          i, s, dist[i]);
    }
}
}
 
// This code is contributed by sanjeev2552

Python3




# Python3 implementation to find the
# shortest path in a directed
# graph from source vertex to
# the destination vertex
class Pair:
    def __init__(self, first, second):
        self.first = first
        self.second = second
infi = 1000000000;
   
# Class of the node
class Node:
   
    # Adjacency list that shows the
    # vertexNumber of child vertex
    # and the weight of the edge   
    def __init__(self, vertexNumber):       
        self.vertexNumber = vertexNumber
        self.children = []
   
    # Function to add the child for
    # the given node
    def Add_child(self, vNumber, length):   
        p = Pair(vNumber, length);
        self.children.append(p);
       
# Function to find the distance of
# the node from the given source
# vertex to the destination vertex
def dijkstraDist(g, s, path):
       
    # Stores distance of each
    # vertex from source vertex
    dist = [infi for i in range(len(g))]
   
    # bool array that shows
    # whether the vertex 'i'
    # is visited or not
    visited = [False for i in range(len(g))]
     
    for i in range(len(g)):       
        path[i] = -1
    dist[s] = 0;
    path[s] = -1;
    current = s;
   
    # Set of vertices that has
    # a parent (one or more)
    # marked as visited
    sett = set()    
    while (True):
           
        # Mark current as visited
        visited[current] = True;
        for i in range(len(g[current].children)): 
            v = g[current].children[i].first;           
            if (visited[v]):
                continue;
   
            # Inserting into the
            # visited vertex
            sett.add(v);
            alt = dist[current] + g[current].children[i].second;
   
            # Condition to check the distance
            # is correct and update it
            # if it is minimum from the previous
            # computed distance
            if (alt < dist[v]):      
                dist[v] = alt;
                path[v] = current;       
        if current in sett:           
            sett.remove(current);       
        if (len(sett) == 0):
            break;
   
        # The new current
        minDist = infi;
        index = 0;
   
        # Loop to update the distance
        # of the vertices of the graph
        for a in sett:       
            if (dist[a] < minDist):          
                minDist = dist[a];
                index = a;          
        current = index;  
    return dist;
   
# Function to print the path
# from the source vertex to
# the destination vertex
def printPath(path, i, s):
    if (i != s):
           
        # Condition to check if
        # there is no path between
        # the vertices
        if (path[i] == -1):       
            print("Path not found!!");
            return;       
        printPath(path, path[i], s);
        print(path[i] + " ");
      
# Driver Code
if __name__=='__main__':
     
    v = []
    n = 4
    s = 0;
   
    # Loop to create the nodes
    for i in range(n):
        a = Node(i);
        v.append(a);
   
    # Creating directed
    # weighted edges
    v[0].Add_child(1, 1);
    v[0].Add_child(2, 4);
    v[1].Add_child(2, 2);
    v[1].Add_child(3, 6);
    v[2].Add_child(3, 3);
    path = [0 for i in range(len(v))];
    dist = dijkstraDist(v, s, path);
   
    # Loop to print the distance of
    # every node from source vertex
    for i in range(len(dist)):
        if (dist[i] == infi):
         
            print("{0} and {1} are not " +
                              "connected".format(i, s));
            continue;       
        print("Distance of {}th vertex from source vertex {} is: {}".format(
                          i, s, dist[i]));
     
    # This code is contributed by pratham76

C#




// C# implementation to find the
// shortest path in a directed
// graph from source vertex to
// the destination vertex
using System;
using System.Collections;
using System.Collections.Generic;
  
class Pair
{
    public int first, second;
  
    public Pair(int first, int second)
    {
        this.first = first;
        this.second = second;
    }
}
  
class GFG
{
  
static int infi = 1000000000;
  
// Class of the node
class Node
{
    public int vertexNumber;
  
    // Adjacency list that shows the
    // vertexNumber of child vertex
    // and the weight of the edge
    public List<Pair> children;
  
    public Node(int vertexNumber)
    {
        this.vertexNumber = vertexNumber;
        children = new List<Pair>();
    }
  
    // Function to Add the child for
    // the given node
    public void Add_child(int vNumber, int length)
    {
        Pair p = new Pair(vNumber, length);
        children.Add(p);
    }
}
  
// Function to find the distance of
// the node from the given source
// vertex to the destination vertex
static int[] dijkstraDist(List<Node> g,
                          int s, int[] path)
{
      
    // Stores distance of each
    // vertex from source vertex
    int[] dist = new int[g.Count];
  
    // bool array that shows
    // whether the vertex 'i'
    // is visited or not
    bool[] visited = new bool[g.Count];
    for(int i = 0; i < g.Count; i++)
    {
        visited[i] = false;
        path[i] = -1;
        dist[i] = infi;
    }
    dist[s] = 0;
    path[s] = -1;
    int current = s;
  
    // Set of vertices that has
    // a parent (one or more)
    // marked as visited
    HashSet<int> sett = new HashSet<int>();
     
    while (true)
    {
          
        // Mark current as visited
        visited[current] = true;
        for(int i = 0;
                i < g[current].children.Count;
                i++)
        {
            int v = g[current].children[i].first;           
            if (visited[v])
                continue;
  
            // Inserting into the
            // visited vertex
            sett.Add(v);
            int alt = dist[current] +
                     g[current].children[i].second;
  
            // Condition to check the distance
            // is correct and update it
            // if it is minimum from the previous
            // computed distance
            if (alt < dist[v])
            {
                dist[v] = alt;
                path[v] = current;
            }
        }
        sett.Remove(current);
          
        if (sett.Count == 0)
            break;
  
        // The new current
        int minDist = infi;
        int index = 0;
  
        // Loop to update the distance
        // of the vertices of the graph
        foreach(int a in sett)
        {
            if (dist[a] < minDist)
            {
                minDist = dist[a];
                index = a;
            }
        }
        current = index;
    }
    return dist;
}
  
// Function to print the path
// from the source vertex to
// the destination vertex
void printPath(int[] path, int i, int s)
{
    if (i != s)
    {
          
        // Condition to check if
        // there is no path between
        // the vertices
        if (path[i] == -1)
        {
            Console.WriteLine("Path not found!!");
            return;
        }
        printPath(path, path[i], s);
        Console.WriteLine(path[i] + " ");
    }
}
  
// Driver Code
public static void Main(string[] args)
{
    List<Node> v = new List<Node>();
    int n = 4, s = 0;
  
    // Loop to create the nodes
    for(int i = 0; i < n; i++)
    {
        Node a = new Node(i);
        v.Add(a);
    }
  
    // Creating directed
    // weighted edges
    v[0].Add_child(1, 1);
    v[0].Add_child(2, 4);
    v[1].Add_child(2, 2);
    v[1].Add_child(3, 6);
    v[2].Add_child(3, 3);
  
    int[] path = new int[v.Count];
    int[] dist = dijkstraDist(v, s, path);
  
    // Loop to print the distance of
    // every node from source vertex
    for(int i = 0; i < dist.Length; i++)
    {
        if (dist[i] == infi)
        {
            Console.Write("{0} and {1} are not " +
                              "connected\n", i, s);
            continue;
        }
        Console.Write("Distance of {0}th vertex " +
                          "from source vertex {1} is: {2}\n",
                          i, s, dist[i]);
    }
}
}
 
// This code is contributed by rutvik_56
Output: 
Distance of 0th vertex from source vertex 0 is: 0 
Distance of 1th vertex from source vertex 0 is: 1 
Distance of 2th vertex from source vertex 0 is: 3 
Distance of 3th vertex from source vertex 0 is: 6 
 

Time Complexity: {\displaystyle \Theta ((|V|^{2})\log |V|)}
Related articles: We have already discussed the shortest path in directed graph using Topological Sorting, in this article: Shortest path in Directed Acyclic graph
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer DSA Live Classes




My Personal Notes arrow_drop_up
Recommended Articles
Page :