Set Colorbar Range in matplotlib
Hello Geeks! In this article, we will try to set the color range using the matplotlib Python module. Matplotlib allows us a large range of Colorbar customization. The Colorbar is simply an instance of plt.Axes. It provides a scale for number-to-color ratio based on the data in a graph. Setting a range limits the colors to a subsection, The Colorbar falsely conveys the information that the lower limit of the data is comparable to its upper limit. With the two different limits, you can control the range and legend of the Colorbar.
Requirement: Matplotlib, NumPy
For installation Matplotlib
pip install matplotlib
For installation Numpy.
pip install numpy
Let’s understand with step-wise implementation:
Step 1:
Import required library and set up some generic data.
Python3
import numpy as np import matplotlib.pyplot as plt # setup some generic data N = 37 x, y = np.mgrid[:N, :N] Z = (np.cos(x * 0.2 ) + np.sin(y * 0.3 )) |
Step 2:
Mask out the negative and positive values.
Python3
Zpos = np.ma.masked_less(Z, 0 ) Zneg = np.ma.masked_greater(Z, 0 ) |
Step 3:
Display data as an image, i.e., on a 2D regular raster.
Python3
# plot just the positive data and save the # color "mappable" object returned by ax1.imshow pos = ax1.imshow(Zpos, cmap = 'Blues' , interpolation = 'none' ) |
Step 4:
Plot both positive and negative values between +/- 1.2
Python3
fig, (ax1, ax2, ax3) = plt.subplots(figsize = ( 13 , 3 ), ncols = 3 ) pos_neg_clipped = ax3.imshow(Z, cmap = 'RdBu' , vmin = - 1.2 , vmax = 1.2 ) # Add minorticks on the colorbar to make # it easy to read the values off the colorbar. color_bar = fig.colorbar(pos_neg_clipped, ax = ax3, extend = 'both' ) color_bar.minorticks_on() plt.show() |
Output:
Below is the full implementation:
Python3
import numpy as np import matplotlib.pyplot as plt # setup some generic data N = 37 x, y = np.mgrid[:N, :N] Z = (np.cos(x * 0.2 ) + np.sin(y * 0.3 )) # mask out the negative and positive values Zpositive = np.ma.masked_less(Z, 0 ) Znegative = np.ma.masked_greater(Z, 0 ) fig, (ax1, ax2, ax3) = plt.subplots(figsize = ( 13 , 3 ), ncols = 3 ) # plot just the positive data and save the # color "mappable" object returned by ax1.imshow pos = ax1.imshow(Zpositive, cmap = 'Blues' ) # add the colorbar using the figure's method, fig.colorbar(pos, ax = ax1) # repeat everything above for the negative data neg = ax2.imshow(Znegative, cmap = 'Reds_r' ) fig.colorbar(neg, ax = ax2) # Plot both positive and negative values between +/- 1.2 pos_neg_clipped = ax3.imshow(Z, cmap = 'RdBu' , vmin = - 1.2 , vmax = 1.2 ) # Add minorticks on the colorbar to make # it easy to read the values off the colorbar. color_bar = fig.colorbar(pos_neg_clipped, ax = ax3, extend = 'both' ) color_bar.minorticks_on() plt.show() |
Output:
Please Login to comment...