Skip to content
Related Articles

Related Articles

Improve Article

Select specific column of PySpark dataframe with its position

  • Last Updated : 21 Jun, 2021

In this article, we will discuss how to select a specific column by using its position from a pyspark dataframe in Python. For this, we will use dataframe.columns() method inside method.



  • dataframe is the dataframe name
  • dataframe.columns[]: is the methid which can take column number as an input and select those column
  • show() function is used to display the selected column

Let’s create a sample dataframe.


# importing module
import pyspark
# importing sparksession from pyspark.sql module
from pyspark.sql import SparkSession
# creating sparksession and giving an app name
spark = SparkSession.builder.appName('sparkdf').getOrCreate()
# list  of students  data
data = [["1", "sravan", "vignan"], ["2", "ojaswi", "vvit"],
        ["3", "rohith", "vvit"], ["4", "sridevi", "vignan"],
        ["1", "sravan", "vignan"], ["5", "gnanesh", "iit"]]
# specify column names
columns = ['student ID', 'student NAME', 'college']
# creating a dataframe from the lists of data
dataframe = spark.createDataFrame(data, columns)
print("Actual data in dataframe")
# show dataframe


Selecting a column by column number


# select column with column number 1[1]).show()


We can also select multiple columns with the same function with slice operator(:). It can access up to n columns.



#select column with column number slice operator[1:3]).show()


 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course

My Personal Notes arrow_drop_up
Recommended Articles
Page :