Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Select any row from a Dataframe using iloc[] and iat[] in Pandas

  • Last Updated : 23 Aug, 2021

In this article, we will learn how to get the rows from a dataframe as a list, using the functions ilic[] and iat[]. There are multiple ways to do get the rows as a list from given dataframe. Let’s see them will the help of examples. 
 

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning - Basic Level Course

Python




import pandas as pd
   
# Create the dataframe
df = pd.DataFrame({'Date':['10/2/2011', '11/2/2011', '12/2/2011', '13/2/11'],
                    'Event':['Music', 'Poetry', 'Theatre', 'Comedy'],
                    'Cost':[10000, 5000, 15000, 2000]})
 
# Create an empty list
Row_list =[]
   
# Iterate over each row
for i in range((df.shape[0])):
   
    # Using iloc to access the values of 
    # the current row denoted by "i"
    Row_list.append(list(df.iloc[i, :]))
   
# Print the first 3 elements
print(Row_list[:3])

Output: 
 

[[10000, '10/2/2011', 'Music'], [5000, '11/2/2011', 'Poetry'],
      [15000, '12/2/2011', 'Theatre']

  
Using iat[] method – 
 

Python3




# importing pandas as pd
import pandas as pd
   
# Create the dataframe
df = pd.DataFrame({'Date':['10/2/2011', '11/2/2011', '12/2/2011', '13/2/11'],
                    'Event':['Music', 'Poetry', 'Theatre', 'Comedy'],
                    'Cost':[10000, 5000, 15000, 2000]})
   
# Create an empty list
Row_list =[]
   
# Iterate over each row
for i in range((df.shape[0])):
    # Create a list to store the data
    # of the current row
    cur_row =[]
       
    # iterate over all the columns
    for j in range(df.shape[1]):
           
        # append the data of each
        # column to the list
        cur_row.append(df.iat[i, j])
           
    # append the current row to the list
    Row_list.append(cur_row)
 
# Print the first 3 elements
print(Row_list[:3])

Output: 
 

[[10000, '10/2/2011', 'Music'], [5000, '11/2/2011', 'Poetry'], 
      [15000, '12/2/2011', 'Theatre']]

 




My Personal Notes arrow_drop_up
Recommended Articles
Page :