# Segmented Sieve (Print Primes in a Range)

Given a range [low, high], print all primes in this range? For example, if the given range is [10, 20], then output is 11, 13, 17, 19.

A Naive approach is to run a loop from low to high and check each number for primeness.
A Better Approach is to precalculate primes up to the maximum limit using Sieve of Eratosthenes, then print all prime numbers in range.
The above approach looks good, but consider the input range [50000, 55000]. the above Sieve approach would precalculate primes from 2 to 50100. This causes a waste of memory as well as time. Below is the Segmented Sieve based approach.

Segmented Sieve (Background)
Below are basic steps to get an idea of how Segmented Sieve works

1. Use Simple Sieve to find all primes up to a predefined limit (square root of ‘high’ is used in below code) and store these primes in an array “prime[]”. Basically we call Simple Sieve for a limit and we not only find prime numbers, but also puts them in a separate array prime[].
2. Create an array mark[high-low+1]. Here we need only O(n) space where n is number of elements in given range.
3. Iterate through all primes found in step 1. For every prime, mark its multiples in given range [low..high].

So unlike simple sieve, we don’t check for all multiples of every number smaller than square root of high, we only check for multiples of primes found in step 1. And we don’t need O(high) space, we need O(sqrt(high) + n) space.
Below is the implementation of above idea.

## C++

 `// C++ program to` `// print all primes in a range` `// using concept of Segmented Sieve` `#include ` `using` `namespace` `std;`   `// This functions finds all ` `// primes smaller than limit` `// using simple sieve of eratosthenes.  ` `// It stores found` `// primes in vector prime[]` `void` `simpleSieve(``int` `limit, vector<``int``>& prime)` `{` `    ``bool` `mark[limit + 1];` `    ``memset``(mark, ``false``, ``sizeof``(mark));`   `    ``for` `(``int` `i = 2; i*i <= limit; ++i) ` `    ``{` `        ``if` `(mark[i] == ``false``) ` `        ``{` `            ``// If not marked yet, then its a prime` `            ``prime.push_back(i);` `            ``for` `(``int` `j = i; j <= limit; j += i)` `                ``mark[j] = ``true``;` `        ``}` `    ``}` `}`   `// Finds all prime numbers ` `// in given range using` `// segmented sieve` `void` `primesInRange(``int` `low, ``int` `high)` `{` `    `  `    ``// Compute all primes smaller or equal to` `    ``// square root of high using simple sieve` `    ``int` `limit = ``floor``(``sqrt``(high)) + 1;` `    ``vector<``int``> prime;` `    ``simpleSieve(limit, prime);`   `    ``// Count of elements in given range` `    ``int` `n = high - low + 1;`   `    ``// Declaring boolean only for [low, high]` `    ``bool` `mark[n + 1];` `    ``memset``(mark, ``false``, ``sizeof``(mark));`   `    ``// Use the found primes by ` `    ``// simpleSieve() to find` `    ``// primes in given range` `    ``for` `(``int` `i = 0; i < prime.size(); i++) ` `    ``{` `        `  `        ``// Find the minimum number ` `        ``// in [low..high] that is` `        ``// a multiple of prime[i] ` `        ``// (divisible by prime[i])` `        ``int` `loLim = ``floor``(low / prime[i]) * prime[i];` `        ``if` `(loLim < low)` `            ``loLim += prime[i];` `        ``if``(loLim==prime[i])` `            ``loLim += prime[i];` `        `  `      ``/*  Mark multiples of prime[i] ` `          ``in [low..high]:` `          ``We are marking j - low ` `          ``for j, i.e. each number` `          ``in range [low, high] is ` `          ``mapped to [0, high - low]` `          ``so if range is [50, 100]  ` `          ``marking 50 corresponds` `          ``to marking 0, marking ` `          ``51 corresponds to 1 and` `          ``so on.Also if the current j ` `          ``is prime don't mark ` `          ``it as true.In this way we need ` `          ``to allocate space only` `          ``for range  */` `        ``for` `(``int` `j = loLim; j <= high; j += prime[i])` `            ``if``(j != prime[i])` `              ``mark[j - low] = ``true``;` `    ``}`   `    ``// Numbers which are not marked ` `    ``// in range, are prime` `    ``for` `(``int` `i = low; i <= high; i++)` `        ``if` `(!mark[i - low])` `            ``cout << i << ``"  "``;` `}`   `// Driver Code` `int` `main()` `{` `    ``int` `low = 10, high = 20;` `    ``primesInRange(low, high);` `    ``return` `0;` `}`

## Python

 `# Python program to print` `# print all primes in a range` `# using concept of Segmented Sieve` `from` `math ``import` `floor, sqrt`   `# This functions finds` `# all primes smaller than limit` `# using simple sieve of eratosthenes.` `# It stores found` `# primes in list prime[]`     `def` `simpleSieve(limit, primes):` `    ``mark ``=` `[``False``]``*``(limit``+``1``)`   `    ``for` `i ``in` `range``(``2``, limit``+``1``):` `        ``if` `not` `mark[i]:`   `            ``# If not marked yet,` `            ``# then its a prime` `            ``primes.append(i)` `            ``for` `j ``in` `range``(i, limit``+``1``, i):` `                ``mark[j] ``=` `True`     `# Finds all prime numbers` `# in given range using` `# segmented sieve` `def` `primesInRange(low, high):`   `    ``# Comput all primes smaller` `    ``# or equal to` `    ``# square root of high` `    ``# using simple sieve` `    ``limit ``=` `floor(sqrt(high)) ``+` `1` `    ``primes ``=` `list``()` `    ``simpleSieve(limit, primes)`   `    ``# Count of elements in given range` `    ``n ``=` `high ``-` `low ``+` `1`   `    ``# Declaring boolean only for` `    ``# [low, high]` `    ``mark ``=` `[``False``]``*``(n``+``1``)`   `    ``# Use the found primes by` `    ``# simpleSieve() to find` `    ``# primes in given range` `    ``for` `i ``in` `range``(``len``(primes)):`   `        ``# Find the minimum number` `        ``# in [low..high] that is` `        ``# a multiple of prime[i]` `        ``# (divisible by prime[i])` `        ``loLim ``=` `floor(low``/``primes[i]) ``*` `primes[i]` `        ``if` `loLim < low:` `            ``loLim ``+``=` `primes[i]` `        ``if` `loLim ``=``=` `primes[i]:` `            ``loLim ``+``=` `primes[i]`   `        ``# Mark multiples of primes[i]` `        ``# in [low..high]:` `        ``# We are marking j - low for j,` `        ``# i.e. each number` `        ``# in range [low, high] is mapped` `        ``# to [0, high-low]` `        ``# so if range is [50, 100]` `        ``# marking 50 corresponds` `        ``# to marking 0, marking 51` `        ``# corresponds to 1 and` `        ``# so on. In this way we need` `        ``# to allocate space` `        ``# only for range` `        ``for` `j ``in` `range``(loLim, high``+``1``, primes[i]):` `            ``if` `j !``=` `primes[i]:` `                ``mark[j``-``low] ``=` `True`   `    ``# Numbers which are not marked` `    ``# in range, are prime` `    ``for` `i ``in` `range``(low, high``+``1``):` `        ``if` `not` `mark[i``-``low]:` `            ``print``(i, end``=``" "``)`     `# Driver code` `low ``=` `10` `high ``=` `100` `primesInRange(low, high)`

## Java

 `// Java program to print` `// all primes in a range` `// using concept of Segmented Sieve` `import` `java.io.*;` `import` `java.util.*;`   `class` `GFG {` `    ``// This function uses simple sieve of eratosthenes to` `    ``// find primes upto sqrt(high)` `    ``static` `void` `simpleSieve(``int` `limit,` `                            ``Vector prime)` `    ``{` `        ``// bound is square root of "high"` `        ``int` `bound = (``int``)Math.sqrt(limit);`   `        ``boolean``[] mark = ``new` `boolean``[bound + ``1``];` `        ``for` `(``int` `i = ``0``; i <= bound; i++)` `            ``mark[i] = ``true``;`   `        ``for` `(``int` `i = ``2``; i * i <= bound; i++) {` `            ``if` `(mark[i] == ``true``) {` `                ``for` `(``int` `j = i * i; j <= bound; j += i)` `                    ``mark[i] = ``false``;` `            ``}` `        ``}`   `        ``// adding primes to vector` `        ``for` `(``int` `i = ``2``; i <= bound; i++) {` `            ``if` `(mark[i] == ``true``)` `                ``prime.add(i);` `        ``}` `    ``}`   `    ``// Finds all prime numbers in range low to high` `    ``// using the primes we obtained from` `    ``// simple sieve` `    ``static` `void` `segmentedSieve(``int` `low, ``int` `high)` `    ``{` `        ``Vector prime = ``new` `Vector();` `        ``simpleSieve(high, prime); ``// stores primes upto` `                                  ``// sqrt(high) in prime`   `        ``boolean``[] mark = ``new` `boolean``[high - low + ``1``];` `        ``for` `(``int` `i = ``0``; i < mark.length; i++)` `            ``mark[i] = ``true``;`   `        ``for` `(``int` `i = ``0``; i < prime.size(); i++) {` `            ``// find minimum number in [low...high]` `            ``// that is multiple of prime[i]` `            ``int` `loLim = (low / prime.get(i)) * prime.get(i);` `            ``// loLim += prime.get(i);` `            ``if` `(loLim < low)` `                ``loLim += prime.get(i);` `            ``if` `(loLim == prime.get(i))` `                ``loLim += prime.get(i);`   `            ``for` `(``int` `j = loLim; j <= high;` `                 ``j += prime.get(i)) {` `                ``if` `(j != prime.get(i))` `                    ``mark[j - low] = ``false``;` `            ``}` `        ``}`   `        ``// print all primes in [low...high]` `        ``for` `(``int` `i = low; i <= high; i++) {` `            ``if` `(mark[i - low] == ``true``)` `                ``System.out.print(i + ``" "``);` `        ``}` `    ``}`   `    ``// Driver Code` `    ``public` `static` `void` `main(String args[])` `    ``{` `        ``int` `low = ``10``, high = ``100``;` `        ``segmentedSieve(low, high);` `    ``}` `}`

Output

`11  13  15  17  19  `

Segmented Sieve (What if ‘high’ value of range is too high and range is also big)
Consider a situation where given high value is so high that neither sqrt(high) nor O(high-low+1) can fit in memory. How to find prims in range. For this situation, we run step 1 (Simple Sieve) only for a limit that can fit in memory. Then we divide given range in different segments. For every segment, we run step 2 and 3 considering low and high as end points of current segment. We add primes of current segment to prime[] before running the next segment.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up

Article Tags :
Practice Tags :

13

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.