Skip to content
Related Articles

Related Articles

Seating arrangement of N boys sitting around a round table such that two particular boys sit together
  • Difficulty Level : Easy
  • Last Updated : 31 Mar, 2021

There are N boys which are to be seated around a round table. The task is to find the number of ways in which N boys can sit around a round table such that two particular boys sit together.
Examples: 
 

Input: N = 5 
Output: 48 
2 boy can be arranged in 2! ways and other boys 
can be arranged in (5 – 1)! (1 is subtracted because the 
previously selected two boys will be considered as a single boy now) 
So, total ways are 2! * 4! = 48.
Input: N = 9 
Output: 80640 
 

 

Approach: 
 

  • First, 2 boys can be arranged in 2! ways.
  • No. of ways to arrange remaining boys and the previous two boy pair is (n – 1)!.
  • So, Total ways = 2! * (n – 1)!.

Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the total count of ways
int Total_Ways(int n)
{
 
    // Find (n - 1) factorial
    int fac = 1;
    for (int i = 2; i <= n - 1; i++) {
        fac = fac * i;
    }
 
    // Return (n - 1)! * 2!
    return (fac * 2);
}
 
// Driver code
int main()
{
    int n = 5;
 
    cout << Total_Ways(n);
 
    return 0;
}

Java




// Java implementation of the approach
import java.io.*;
 
class GFG
{
     
// Function to return the total count of ways
static int Total_Ways(int n)
{
 
    // Find (n - 1) factorial
    int fac = 1;
    for (int i = 2; i <= n - 1; i++)
    {
        fac = fac * i;
    }
 
    // Return (n - 1)! * 2!
    return (fac * 2);
}
 
// Driver code
public static void main (String[] args)
{
 
    int n = 5;
 
    System.out.println (Total_Ways(n));
}
}
 
// This code is contributed by Tushil.

Python3




# Python3 implementation of the approach
 
# Function to return the total count of ways
def Total_Ways(n) :
 
    # Find (n - 1) factorial
    fac = 1;
    for i in range(2, n) :
        fac = fac * i;
         
    # Return (n - 1)! * 2!
    return (fac * 2);
 
 
# Driver code
if __name__ == "__main__" :
 
    n = 5;
 
    print(Total_Ways(n));
 
# This code is contributed by AnkitRai01

C#




// C# implementation of the approach
using System;
 
class GFG
{
 
// Function to return the total count of ways
static int Total_Ways(int n)
{
 
    // Find (n - 1) factorial
    int fac = 1;
    for (int i = 2; i <= n - 1; i++)
    {
        fac = fac * i;
    }
 
    // Return (n - 1)! * 2!
    return (fac * 2);
}
 
// Driver code
static public void Main ()
{
    int n = 5;
 
    Console.Write(Total_Ways(n));
}
}
 
// This code is contributed by ajit..

Javascript




<script>
// javascript implementation of the approach
 
    // Function to return the total count of ways
    function Total_Ways(n)
    {
 
        // Find (n - 1) factorial
        var fac = 1;
        for (i = 2; i <= n - 1; i++)
        {
            fac = fac * i;
        }
 
        // Return (n - 1)! * 2!
        return (fac * 2);
    }
 
    // Driver code
        var n = 5;
        document.write(Total_Ways(n));
 
// This code is contributed by aashish1995
</script>
Output: 
48

 

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.




My Personal Notes arrow_drop_up
Recommended Articles
Page :