Skip to content
Related Articles

Related Articles

Improve Article
Seating arrangement of N boys sitting around a round table such that two particular boys sit together
  • Difficulty Level : Easy
  • Last Updated : 31 Mar, 2021

There are N boys which are to be seated around a round table. The task is to find the number of ways in which N boys can sit around a round table such that two particular boys sit together.
Examples: 
 

Input: N = 5 
Output: 48 
2 boy can be arranged in 2! ways and other boys 
can be arranged in (5 – 1)! (1 is subtracted because the 
previously selected two boys will be considered as a single boy now) 
So, total ways are 2! * 4! = 48.
Input: N = 9 
Output: 80640 
 

 

Approach: 
 

  • First, 2 boys can be arranged in 2! ways.
  • No. of ways to arrange remaining boys and the previous two boy pair is (n – 1)!.
  • So, Total ways = 2! * (n – 1)!.

Below is the implementation of the above approach: 
 



C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the total count of ways
int Total_Ways(int n)
{
 
    // Find (n - 1) factorial
    int fac = 1;
    for (int i = 2; i <= n - 1; i++) {
        fac = fac * i;
    }
 
    // Return (n - 1)! * 2!
    return (fac * 2);
}
 
// Driver code
int main()
{
    int n = 5;
 
    cout << Total_Ways(n);
 
    return 0;
}

Java




// Java implementation of the approach
import java.io.*;
 
class GFG
{
     
// Function to return the total count of ways
static int Total_Ways(int n)
{
 
    // Find (n - 1) factorial
    int fac = 1;
    for (int i = 2; i <= n - 1; i++)
    {
        fac = fac * i;
    }
 
    // Return (n - 1)! * 2!
    return (fac * 2);
}
 
// Driver code
public static void main (String[] args)
{
 
    int n = 5;
 
    System.out.println (Total_Ways(n));
}
}
 
// This code is contributed by Tushil.

Python3




# Python3 implementation of the approach
 
# Function to return the total count of ways
def Total_Ways(n) :
 
    # Find (n - 1) factorial
    fac = 1;
    for i in range(2, n) :
        fac = fac * i;
         
    # Return (n - 1)! * 2!
    return (fac * 2);
 
 
# Driver code
if __name__ == "__main__" :
 
    n = 5;
 
    print(Total_Ways(n));
 
# This code is contributed by AnkitRai01

C#




// C# implementation of the approach
using System;
 
class GFG
{
 
// Function to return the total count of ways
static int Total_Ways(int n)
{
 
    // Find (n - 1) factorial
    int fac = 1;
    for (int i = 2; i <= n - 1; i++)
    {
        fac = fac * i;
    }
 
    // Return (n - 1)! * 2!
    return (fac * 2);
}
 
// Driver code
static public void Main ()
{
    int n = 5;
 
    Console.Write(Total_Ways(n));
}
}
 
// This code is contributed by ajit..

Javascript




<script>
// javascript implementation of the approach
 
    // Function to return the total count of ways
    function Total_Ways(n)
    {
 
        // Find (n - 1) factorial
        var fac = 1;
        for (i = 2; i <= n - 1; i++)
        {
            fac = fac * i;
        }
 
        // Return (n - 1)! * 2!
        return (fac * 2);
    }
 
    // Driver code
        var n = 5;
        document.write(Total_Ways(n));
 
// This code is contributed by aashish1995
</script>
Output: 
48

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer DSA Live Classes




My Personal Notes arrow_drop_up
Recommended Articles
Page :