Given an array of n distinct integers and an element x. Search the element x in the array using minimum number of comparisons. Any sort of comparison will contribute 1 to the count of comparisons. For example, the condition used to terminate a loop, will also contribute 1 to the count of comparisons each time it gets executed. Expressions like while (n) {n–;} also contribute to the count of comparisons as value of n is being compared internally so as to decide whether or not to terminate the loop.
Examples:
Input : arr[] = {4, 6, 1, 5, 8}, x = 1 Output : Found Input : arr[] = {10, 3, 12, 7, 2, 11, 9}, x = 15 Output : Not Found
Asked in Adobe Interview
Below simple method to search requires 2n + 1 comparisons in worst case.
for (i = 0; i < n; i++) // Worst case n+1 if (arr[i] == x) // Worst case n return i;
How to reduce number of comparisons?
The idea is to copy x (element to be searched) to last location so that one last comparison when x is not present in arr[] is saved.
Algorithm:
search(arr, n, x) if arr[n-1] == x // 1 comparison return "true" backup = arr[n-1] arr[n-1] = x for i=0, i++ // no termination condition if arr[i] == x // execute at most n times // that is at-most n comparisons arr[n-1] = backup return (i < n-1) // 1 comparison
// C++ implementation to search an element in // the unsorted array using minimum number of // comparisons #include <bits/stdc++.h> using namespace std;
// function to search an element in // minimum number of comparisons string search( int arr[], int n, int x)
{ // 1st comparison
if (arr[n - 1] == x)
return "Found" ;
int backup = arr[n - 1];
arr[n - 1] = x;
// no termination condition and thus
// no comparison
for ( int i = 0;; i++) {
// this would be executed at-most n times
// and therefore at-most n comparisons
if (arr[i] == x) {
// replace arr[n-1] with its actual element
// as in original 'arr[]'
arr[n - 1] = backup;
// if 'x' is found before the '(n-1)th'
// index, then it is present in the array
// final comparison
if (i < n - 1)
return "Found" ;
// else not present in the array
return "Not Found" ;
}
}
} // Driver program to test above int main()
{ int arr[] = { 4, 6, 1, 5, 8 };
int n = sizeof (arr) / sizeof (arr[0]);
int x = 1;
cout << search(arr, n, x);
return 0;
} |
// Java implementation to search an element in // the unsorted array using minimum number of // comparisons import java.io.*;
class GFG {
// Function to search an element in
// minimum number of comparisons
static String search( int arr[], int n, int x)
{
// 1st comparison
if (arr[n - 1 ] == x)
return "Found" ;
int backup = arr[n - 1 ];
arr[n - 1 ] = x;
// no termination condition and thus
// no comparison
for ( int i = 0 ;; i++) {
// this would be executed at-most n times
// and therefore at-most n comparisons
if (arr[i] == x) {
// replace arr[n-1] with its actual element
// as in original 'arr[]'
arr[n - 1 ] = backup;
// if 'x' is found before the '(n-1)th'
// index, then it is present in the array
// final comparison
if (i < n - 1 )
return "Found" ;
// else not present in the array
return "Not Found" ;
}
}
}
// driver program
public static void main(String[] args)
{
int arr[] = { 4 , 6 , 1 , 5 , 8 };
int n = arr.length;
int x = 1 ;
System.out.println(search(arr, n, x));
}
} // Contributed by Pramod Kumar |
# Python3 implementation to search an # element in the unsorted array using # minimum number of comparisons # function to search an element in # minimum number of comparisons def search(arr, n, x):
# 1st comparison
if (arr[n - 1 ] = = x) :
return "Found"
backup = arr[n - 1 ]
arr[n - 1 ] = x
# no termination condition and
# thus no comparison
i = 0
while (i < n) :
# this would be executed at-most n times
# and therefore at-most n comparisons
if (arr[i] = = x) :
# replace arr[n-1] with its actual
# element as in original 'arr[]'
arr[n - 1 ] = backup
# if 'x' is found before the '(n-1)th'
# index, then it is present in the
# array final comparison
if (i < n - 1 ):
return "Found"
# else not present in the array
return "Not Found"
i = i + 1
# Driver Code arr = [ 4 , 6 , 1 , 5 , 8 ]
n = len (arr)
x = 1
print (search(arr, n, x))
# This code is contributed by rishabh_jain |
// C# implementation to search an // element in the unsorted array // using minimum number of comparisons using System;
class GFG {
// Function to search an element in
// minimum number of comparisons
static String search( int [] arr, int n, int x)
{
// 1st comparison
if (arr[n - 1] == x)
return "Found" ;
int backup = arr[n - 1];
arr[n - 1] = x;
// no termination condition and thus
// no comparison
for ( int i = 0;; i++) {
// this would be executed at-most n times
// and therefore at-most n comparisons
if (arr[i] == x) {
// replace arr[n-1] with its actual element
// as in original 'arr[]'
arr[n - 1] = backup;
// if 'x' is found before the '(n-1)th'
// index, then it is present in the array
// final comparison
if (i < n - 1)
return "Found" ;
// else not present in the array
return "Not Found" ;
}
}
}
// driver program
public static void Main()
{
int [] arr = { 4, 6, 1, 5, 8 };
int n = arr.Length;
int x = 1;
Console.WriteLine(search(arr, n, x));
}
} // This code is contributed by Sam007 |
<?php // PHP implementation to // search an element in // the unsorted array // using minimum number of // comparisons // function to search an // element in minimum // number of comparisons function search( $arr , $n , $x )
{ // 1st comparison
if ( $arr [ $n - 1] == $x )
return "Found" ;
$backup = $arr [ $n - 1];
$arr [ $n - 1] = $x ;
// no termination
// condition and thus
// no comparison
for ( $i = 0; ; $i ++)
{
// this would be executed
// at-most n times and
// therefore at-most
// n comparisons
if ( $arr [ $i ] == $x )
{
// replace arr[n-1]
// with its actual element
// as in original 'arr[]'
$arr [ $n - 1] = $backup ;
// if 'x' is found before
// the '(n-1)th' index,
// then it is present
// in the array
// final comparison
if ( $i < $n - 1)
return "Found" ;
// else not present
// in the array
return "Not Found" ;
}
}
} // Driver Code $arr = array ( 4, 6, 1, 5, 8 );
$n = sizeof( $arr );
$x = 1;
echo (search( $arr , $n , $x ));
// This code is contributed by Ajit. ?> |
Output:
Found
Time Complexity: O(n)
Number of Comparisons: Atmost (n+2) comparisons
This article is contributed by Ayush Jauhari. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.