Skip to content
Related Articles

Related Articles

Improve Article
Search an element in a reverse sorted array
  • Difficulty Level : Easy
  • Last Updated : 07 May, 2021

Given an array arr[] sorted in decreasing order, and an integer X, the task is to check if X is present in the given array or not. If X is present in the array, print its index ( 0-based indexing). Otherwise, print -1.

Examples: 

Input: arr[] = {5, 4, 3, 2, 1}, X = 4
Output: 1
Explanation: Element X (= 4) is present at index 1.
Therefore, the required output is 1.

Input: arr[] = {10, 8, 2, -9}, X = 5
Output: -1
Explanation: Element X (= 5) is not present in the array.
Therefore, the required output is -1.

 

Naive Approach: The simplest approach to solve the problem is to traverse the array and for each element, check if it is equal to X or not. If any element is found to satisfy that condition, print the index of that element. Otherwise print -1



Time Complexity: O(N) 
Auxiliary Space: O(1)

Efficient Approach: To solve the problem, the idea is to use Binary Search based on the approach discussed in the article search an element in a sorted array. Follow the steps below to solve the problem: 

  1. Compare X with the middle element.
  2. If X matches with the middle element (arr[mid]), return the index mid.
  3. If X is found to be greater than the arr[mid], then X can only lie in the subarray [mid + 1, end]. So search for X in the subarray {arr[mid + 1], .., arr[end]} .
  4. Otherwise, search in the subarray {arr[start], …., arr[mid]}

Below is the implementation of the above approach:

C




// C program for the above approach
#include <stdio.h>
 
// Function to search if element X
// is present in reverse sorted array
int binarySearch(int arr[], int N, int X)
{
    // Store the first index of the
    // subarray in which X lies
    int start = 0;
 
    // Store the last index of the
    // subarray in which X lies
    int end = N;
 
    while (start <= end) {
 
        // Store the middle index
        // of the subarray
        int mid = start
                  + (end - start) / 2;
 
        // Check if value at middle index
        // of the subarray equal to X
        if (X == arr[mid]) {
 
            // Element is found
            return mid;
        }
 
        // If X is smaller than the value
        // at middle index of the subarray
        else if (X < arr[mid]) {
 
            // Search in right
            // half of subarray
            start = mid + 1;
        }
        else {
 
            // Search in left
            // half of subarray
            end = mid - 1;
        }
    }
 
    // If X not found
    return -1;
}
 
// Driver Code
int main()
{
    int arr[] = { 5, 4, 3, 2, 1 };
    int N = sizeof(arr) / sizeof(arr[0]);
    int X = 4;
      
    int res =  binarySearch(arr, N, X);
    printf(" %d " , res);
    return 0;
}
//This code is contributed by Pradeep Mondal P

C++




// C++ program to implement
// the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to search if element X
// is present in reverse sorted array
int binarySearch(int arr[], int N, int X)
{
    // Store the first index of the
    // subarray in which X lies
    int start = 0;
 
    // Store the last index of the
    // subarray in which X lies
    int end = N;
 
    while (start <= end) {
 
        // Store the middle index
        // of the subarray
        int mid = start
                  + (end - start) / 2;
 
        // Check if value at middle index
        // of the subarray equal to X
        if (X == arr[mid]) {
 
            // Element is found
            return mid;
        }
 
        // If X is smaller than the value
        // at middle index of the subarray
        else if (X < arr[mid]) {
 
            // Search in right
            // half of subarray
            start = mid + 1;
        }
        else {
 
            // Search in left
            // half of subarray
            end = mid - 1;
        }
    }
 
    // If X not found
    return -1;
}
 
// Driver Code
int main()
{
    int arr[] = { 5, 4, 3, 2, 1 };
    int N = sizeof(arr) / sizeof(arr[0]);
    int X = 5;
    cout << binarySearch(arr, N, X);
    return 0;
}

Java




// Java Program to implement
// the above approach
class GFG {
 
    // Function to search if element X
    // is present in reverse sorted array
    static int binarySearch(int arr[],
                            int N, int X)
    {
        // Store the first index of the
        // subarray in which X lies
        int start = 0;
 
        // Store the last index of the
        // subarray in which X lies
        int end = N;
        while (start <= end) {
 
            // Store the middle index
            // of the subarray
            int mid = start
                      + (end - start) / 2;
 
            // Check if value at middle index
            // of the subarray equal to X
            if (X == arr[mid]) {
 
                // Element is found
                return mid;
            }
 
            // If X is smaller than the value
            // at middle index of the subarray
            else if (X < arr[mid]) {
 
                // Search in right
                // half of subarray
                start = mid + 1;
            }
            else {
 
                // Search in left
                // half of subarray
                end = mid - 1;
            }
        }
 
        // If X not found
        return -1;
    }
    public static void main(String[] args)
    {
        int arr[] = { 5, 4, 3, 2, 1 };
        int N = arr.length;
        int X = 5;
        System.out.println(
            binarySearch(arr, N, X));
    }
}

Python3




# Python3 program to implement
# the above approach
 
# Function to search if element X
# is present in reverse sorted array
def binarySearch(arr, N, X):
     
    # Store the first index of the
    # subarray in which X lies
    start = 0
 
    # Store the last index of the
    # subarray in which X lies
    end = N
 
    while (start <= end):
 
        # Store the middle index
        # of the subarray
        mid = start + (end - start) // 2
 
        # Check if value at middle index
        # of the subarray equal to X
        if (X == arr[mid]):
 
            # Element is found
            return mid
 
        # If X is smaller than the value
        # at middle index of the subarray
        elif (X < arr[mid]):
 
            # Search in right
            # half of subarray
            start = mid + 1
        else:
 
            # Search in left
            # half of subarray
            end = mid - 1
 
    # If X not found
    return -1
 
# Driver Code
if __name__ == '__main__':
     
    arr = [ 5, 4, 3, 2, 1 ]
    N = len(arr)
    X = 5
     
    print(binarySearch(arr, N, X))
 
# This code is contributed by mohit kumar 29

C#




// C# Program to implement
// the above approach
using System;
class GFG{
 
// Function to search if element X
// is present in reverse sorted array
static int binarySearch(int []arr,
                        int N, int X)
{
  // Store the first index of the
  // subarray in which X lies
  int start = 0;
 
  // Store the last index of the
  // subarray in which X lies
  int end = N;
  while (start <= end)
  {
    // Store the middle index
    // of the subarray
    int mid = start +
              (end - start) / 2;
 
    // Check if value at middle index
    // of the subarray equal to X
    if (X == arr[mid])
    {
      // Element is found
      return mid;
    }
 
    // If X is smaller than the value
    // at middle index of the subarray
    else if (X < arr[mid])
    {
      // Search in right
      // half of subarray
      start = mid + 1;
    }
    else
    {
      // Search in left
      // half of subarray
      end = mid - 1;
    }
  }
 
  // If X not found
  return -1;
}
 
// Driver code
public static void Main(String[] args)
{
  int []arr = {5, 4, 3, 2, 1};
  int N = arr.Length;
  int X = 5;
  Console.WriteLine(binarySearch(arr, N, X));
}
}
 
// This code is contributed by Princi Singh

Javascript




<script>
// JavaScript program to implement
// the above approach
 
// Function to search if element X
// is present in reverse sorted array
function binarySearch(arr, N, X)
{
    // Store the first index of the
    // subarray in which X lies
    let start = 0;
 
    // Store the last index of the
    // subarray in which X lies
    let end = N;
 
    while (start <= end) {
 
        // Store the middle index
        // of the subarray
        let mid = Math.floor(start
                + (end - start) / 2);
 
        // Check if value at middle index
        // of the subarray equal to X
        if (X == arr[mid]) {
 
            // Element is found
            return mid;
        }
 
        // If X is smaller than the value
        // at middle index of the subarray
        else if (X < arr[mid]) {
 
            // Search in right
            // half of subarray
            start = mid + 1;
        }
        else {
 
            // Search in left
            // half of subarray
            end = mid - 1;
        }
    }
 
    // If X not found
    return -1;
}
 
// Driver Code
    let arr = [ 5, 4, 3, 2, 1 ];
    let N = arr.length;
    let X = 5;
    document.write(binarySearch(arr, N, X));
 
     
 
 
 
// This code is contributed by Surbhi Tyagi.
</script>
Output: 
1

 

Time Complexity: O(log2N)
Auxiliary Space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live 




My Personal Notes arrow_drop_up
Recommended Articles
Page :