sciPy stats.tsem() function | Python

scipy.stats.tsem(array, limits=None, inclusive=(True, True)) calculates the trimmed standard error of the mean of array elements along the specified axis of the array.

Its formula :-

Parameters :
array: Input array or object having the elements to calculate the trimmed standard error of the mean.
axis: Axis along which the trimmed standard error of the mean is to be computed. By default axis = 0.
limits: Lower and upper bound of the array to consider, values less than the lower limit or greater than the upper limit will be ignored. If limits is None [default], then all values are used.

Returns : Trimmed standard error of the mean of array elements based on the set parameters.

Code #1:



filter_none

edit
close

play_arrow

link
brightness_4
code

# Trimmed Standard error 
   
from scipy import stats
import numpy as np 
   
# array elements ranging from 0 to 19
x = np.arange(20)
    
print("Trimmed Standard error :", stats.tsem(x)) 
   
   
print("\nTrimmed Standard error by setting limit : "
      stats.tsem(x, (2, 10)))

chevron_right


Output:

Trimmed Standard error : 1.32287565553

Trimmed Standard error by setting limit :  0.912870929175

 
Code #2: With multi-dimensional data, axis() working

filter_none

edit
close

play_arrow

link
brightness_4
code

# Trimmed Standard error 
   
from scipy import stats
import numpy as np 
  
arr1 = [[1, 3, 27], 
        [5, 3, 18], 
        [17, 16, 333], 
        [3, 6, 82]] 
   
  
# using axis = 0
print("\nTrimmed Standard error is with default axis = 0 : \n"
      stats.tsem(arr1, axis = 1))

chevron_right


Output:

Trimmed Standard error is with default axis = 0 : 
 27.1476974115

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.