Skip to content
Related Articles

Related Articles

Improve Article

sciPy stats.trimboth() function | Python

  • Last Updated : 20 Feb, 2019

scipy.stats.trimboth(a, proportiontocut, axis=0) function slices off the portion of elements in the array from both the ends.

Parameters :
arr : [array_like] Input array or object to trim.
axis : Axis along which the mean is to be computed. By default axis = 0.
proportiontocut : Proportion (in range 0-1) of data to trim of each end.

Results : trimmed array elements from both the ends in the given proportion.

Code #1: Working




# stats.trimboth() method   
import numpy as np
from scipy import stats
    
arr1 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
  
  
print ("\narr1 : ", arr1)
  
print ("\nclipped arr1 : \n", stats.trimboth(arr1, proportiontocut = .3))
print ("\nclipped arr1 : \n", stats.trimboth(arr1, proportiontocut = .1))

Output :



arr1 :  [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

clipped arr1 : 
 [3 4 5 6]

clipped arr1 : 
 [1 3 2 4 5 6 7 8]

 
Code #2:




# stats.trimboth() method   
import numpy as np
from scipy import stats
   
   
arr1 = [[0, 12, 21, 3, 14],
        [53, 16, 37, 85, 39]]
  
print ("\narr1 : ", arr1)
  
print ("\nclipped arr1 : \n"
       stats.trimboth(arr1, proportiontocut = .3))
  
print ("\nclipped arr1 : \n"
       stats.trimboth(arr1, proportiontocut = .1))
  
print ("\nclipped arr1 : \n"
       stats.trimboth(arr1, proportiontocut = .1, axis = 1))
  
print ("\nclipped arr1 : \n"
       stats.trimboth(arr1, proportiontocut = .1, axis = 0))

Output :

arr1 :  [[0, 12, 21, 3, 14], [53, 16, 37, 85, 39]]

clipped arr1 : 
 [[ 0 12 21  3 14]
 [53 16 37 85 39]]

clipped arr1 : 
 [[ 0 12 21  3 14]
 [53 16 37 85 39]]

clipped arr1 : 
 [[ 0  3 12 14 21]
 [16 37 39 53 85]]

clipped arr1 : 
 [[ 0 12 21  3 14]
 [53 16 37 85 39]]

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course




My Personal Notes arrow_drop_up
Recommended Articles
Page :