scipy.stats.skew(array, axis=0, bias=True)
function calculates the skewness of the data set.
skewness = 0 : normally distributed. skewness > 0 : more weight in the left tail of the distribution. skewness < 0 : more weight in the right tail of the distribution.
Its formula –
Parameters :
array : Input array or object having the elements.
axis : Axis along which the skewness value is to be measured. By default axis = 0.
bias : Bool; calculations are corrected for statistical bias, if set to False.Returns : Skewness value of the data set, along the axis.
Code #1:
# Graph using numpy.linspace() # finding Skewness from scipy.stats import skew import numpy as np import pylab as p x1 = np.linspace( - 5 , 5 , 1000 ) y1 = 1. / (np.sqrt( 2. * np.pi)) * np.exp( - . 5 * (x1) * * 2 ) p.plot(x1, y1, '*' ) print ( '\nSkewness for data : ' , skew(y1)) |
Output :
Skewness for data : 1.1108237139164436
Code #2:
# Graph using numpy.linspace() # finding Skewness from scipy.stats import skew import numpy as np import pylab as p x1 = np.linspace( - 5 , 12 , 1000 ) y1 = 1. / (np.sqrt( 2. * np.pi)) * np.exp( - . 5 * (x1) * * 2 ) p.plot(x1, y1, '.' ) print ( '\nSkewness for data : ' , skew(y1)) |
Output :
Skewness for data : 1.917677776148478
Code #3: On Random data
# finding Skewness from scipy.stats import skew import numpy as np # random values based on a normal distribution x = np.random.normal( 0 , 2 , 10000 ) print ( "X : \n" , x) print ( '\nSkewness for data : ' , skew(x)) |
Output :
X : [ 0.03255323 -6.18574775 -0.58430139 ... 3.22112446 1.16543279 0.84083317] Skewness for data : 0.03248837584866293
Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.
To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.