Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

scipy stats.normaltest() function | Python

  • Last Updated : 11 Feb, 2019

scipy.stats.normaltest(array, axis=0) function test whether the sample is different from the normal distribution. This function tests the null hypothesis of the population that the sample was drawn from.

Parameters :
array : Input array or object having the elements.
axis : Axis along which the normal distribution test is to be computed. By default axis = 0.

Returns : k2 value and P-value for the hypothesis test on data set.

Code #1:




# Performing normaltest
from scipy.stats import normaltest
import numpy as np 
import pylab as p 
  
x1 = np.linspace( -5, 5, 1000 )
y1 = 1./(np.sqrt(2.*np.pi)) * np.exp( -.5*(x1)**2  )
  
p.plot(x1, y1, '.')
  
print( '\nNormal test for given data :\n', normaltest(y1))

Output :



Normal test for given data :
 NormaltestResult(statistic=146.08066794511544, pvalue=1.901016994532079e-32)

 
Code #2:




# Performing normaltest
from scipy.stats import normaltest
import numpy as np 
import pylab as p 
  
x1 = np.linspace( -5, 12, 1000 )
y1 = 1./(np.sqrt(2.*np.pi)) * np.exp( -.5*(x1)**2  )
  
p.plot(x1, y1, '.')
  
print( '\nNormal test for given data :\n', normaltest(y1))

Output :



Normal test for given data :
 NormaltestResult(statistic=344.05533061429884, pvalue=1.9468577593501764e-75)

My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!