Skip to content
Related Articles

Related Articles

scipy stats.normaltest() function | Python
  • Last Updated : 11 Feb, 2019

scipy.stats.normaltest(array, axis=0) function test whether the sample is different from the normal distribution. This function tests the null hypothesis of the population that the sample was drawn from.

Parameters :
array : Input array or object having the elements.
axis : Axis along which the normal distribution test is to be computed. By default axis = 0.

Returns : k2 value and P-value for the hypothesis test on data set.

Code #1:






# Performing normaltest
from scipy.stats import normaltest
import numpy as np 
import pylab as p 
  
x1 = np.linspace( -5, 5, 1000 )
y1 = 1./(np.sqrt(2.*np.pi)) * np.exp( -.5*(x1)**2  )
  
p.plot(x1, y1, '.')
  
print( '\nNormal test for given data :\n', normaltest(y1))

Output :



Normal test for given data :
 NormaltestResult(statistic=146.08066794511544, pvalue=1.901016994532079e-32)

 
Code #2:




# Performing normaltest
from scipy.stats import normaltest
import numpy as np 
import pylab as p 
  
x1 = np.linspace( -5, 12, 1000 )
y1 = 1./(np.sqrt(2.*np.pi)) * np.exp( -.5*(x1)**2  )
  
p.plot(x1, y1, '.')
  
print( '\nNormal test for given data :\n', normaltest(y1))

Output :



Normal test for given data :
 NormaltestResult(statistic=344.05533061429884, pvalue=1.9468577593501764e-75)

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :