scipy stats.normaltest() function | Python

scipy.stats.normaltest(array, axis=0) function test whether the sample is different from the normal distribution. This function tests the null hypothesis of the population that the sample was drawn from.

Parameters :
array : Input array or object having the elements.
axis : Axis along which the normal distribution test is to be computed. By default axis = 0.

Returns : k2 value and P-value for the hypothesis test on data set.



Code #1:

filter_none

edit
close

play_arrow

link
brightness_4
code

# Performing normaltest
from scipy.stats import normaltest
import numpy as np 
import pylab as p 
  
x1 = np.linspace( -5, 5, 1000 )
y1 = 1./(np.sqrt(2.*np.pi)) * np.exp( -.5*(x1)**2  )
  
p.plot(x1, y1, '.')
  
print( '\nNormal test for given data :\n', normaltest(y1))

chevron_right


Output :



Normal test for given data :
 NormaltestResult(statistic=146.08066794511544, pvalue=1.901016994532079e-32)

 
Code #2:

filter_none

edit
close

play_arrow

link
brightness_4
code

# Performing normaltest
from scipy.stats import normaltest
import numpy as np 
import pylab as p 
  
x1 = np.linspace( -5, 12, 1000 )
y1 = 1./(np.sqrt(2.*np.pi)) * np.exp( -.5*(x1)**2  )
  
p.plot(x1, y1, '.')
  
print( '\nNormal test for given data :\n', normaltest(y1))

chevron_right


Output :



Normal test for given data :
 NormaltestResult(statistic=344.05533061429884, pvalue=1.9468577593501764e-75)


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.