scipy stats.normaltest() function | Python

scipy.stats.normaltest(array, axis=0) function test whether the sample is different from the normal distribution. This function tests the null hypothesis of the population that the sample was drawn from.

Parameters :
array : Input array or object having the elements.
axis : Axis along which the normal distribution test is to be computed. By default axis = 0.

Returns : k2 value and P-value for the hypothesis test on data set.

Code #1:



filter_none

edit
close

play_arrow

link
brightness_4
code

# Performing normaltest
from scipy.stats import normaltest
import numpy as np 
import pylab as p 
  
x1 = np.linspace( -5, 5, 1000 )
y1 = 1./(np.sqrt(2.*np.pi)) * np.exp( -.5*(x1)**2  )
  
p.plot(x1, y1, '.')
  
print( '\nNormal test for given data :\n', normaltest(y1))

chevron_right


Output :



Normal test for given data :
 NormaltestResult(statistic=146.08066794511544, pvalue=1.901016994532079e-32)

 
Code #2:

filter_none

edit
close

play_arrow

link
brightness_4
code

# Performing normaltest
from scipy.stats import normaltest
import numpy as np 
import pylab as p 
  
x1 = np.linspace( -5, 12, 1000 )
y1 = 1./(np.sqrt(2.*np.pi)) * np.exp( -.5*(x1)**2  )
  
p.plot(x1, y1, '.')
  
print( '\nNormal test for given data :\n', normaltest(y1))

chevron_right


Output :



Normal test for given data :
 NormaltestResult(statistic=344.05533061429884, pvalue=1.9468577593501764e-75)

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.