sciPy stats.nanmedian() function | Python

scipy.stats.nanmedian(array, axis=0) function calculates the median by ignoring the Nan (not a number) values of the array elements along the specified axis of the array.

Parameters :
array : Input array or object having the elements, including Nan values, to calculate the median.
axis : Axis along which the median is to be computed. By default axis = 0

Returns : median of the array elements (ignoring the Nan values) based on the set parameters.

Code #1:

filter_none

edit
close

play_arrow

link
brightness_4
code

# median 
import scipy
import numpy as np
  
arr1 = [1, 3, np.nan, 27, 2, 5
   
print("median using nanmedian :", scipy.nanmedian(arr1))
  
print("median without handling nan value :", scipy.median(arr1)) 

chevron_right


Output:



median using nanmedian : 3.0
median without handling nan value : nan

 
Code #2: With multi-dimensional data

filter_none

edit
close

play_arrow

link
brightness_4
code

# median 
from scipy import median
from scipy import nanmedian
import numpy as np
  
arr1 = [[1, 3, 27], 
        [3, np.nan, 6], 
        [np.nan, 6, 3], 
        [3, 6, np.nan]] 
   
print("median is :", median(arr1)) 
print("median handling nan :", nanmedian(arr1)) 
  
# using axis = 0
print("\nmedian is with default axis = 0 : \n"
      median(arr1, axis = 0))
print("\nmedian handling nan with default axis = 0 : \n"
      nanmedian(arr1, axis = 0))
  
# using axis = 1
print("\nmedian is with default axis = 1 : \n"
      median(arr1, axis = 1))  
print("\nmedian handling nan with default axis = 1 : \n"
      nanmedian(arr1, axis = 1))  

chevron_right


Output:

median is : nan
median handling nan : 3.0

median is with default axis = 0 : 
 [ nan  nan  nan]

median handling nan with default axis = 0 : 
 [ 3.  6.  6.]

median is with default axis = 1 : 
 [  3.  nan  nan  nan]

median handling nan with default axis = 1 : 
 [ 3.   4.5  4.5  4.5]

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.