Skip to content
Related Articles

Related Articles

Improve Article
scipy stats.hypsecant() | Python
  • Last Updated : 07 Jun, 2019

scipy.stats.hypsecant() is an hyperbolic secant continuous random variable. to complete its specificaitons it is defined with a standard format and some shape parameters. The probability density is defined in the “standardized” form.

Parameters :

-> α : scale
-> β : shape
-> μ : location
Code #1 : Creating Hyperbolic secant continuous random variable




from scipy.stats import hypsecant  
   
numargs = hypsecant.numargs
[] = [0.7, 0.4] * numargs
rv = hypsecant ()
   
print ("RV : \n", rv) 

Output:

RV : 
 scipy.stats._distn_infrastructure.rv_frozen object at 0x0000021FB588A160

Code #2 : Hyperbolic secant continuous variates and probability distribution




import numpy as np
quantile = np.arange (0.01, 1, 0.1)
    
# Random Variates
R = hypsecant .rvs(scale = 2,  size = 10)
print ("Random Variates : \n", R)
   
# PDF
R = hypsecant .pdf(quantile, loc = 0, scale = 1)
print ("\nProbability Distribution : \n", R)

Output:



Random Variates : 
 [ 0.50120826  0.60225476 -0.38307417  7.15799321 -1.1929279  -2.03152053
 -0.07410646  1.79859597 -3.14724818  2.03731139]

Probability Distribution : 
 [0.31829397 0.31639377 0.31141785 0.30360449 0.2933099  0.28097073
 0.26706289 0.25206321 0.23641852 0.22052427]

Code #3 : Graphical Representation.




import numpy as np
import matplotlib.pyplot as plt
   
distribution = np.linspace(0, np.minimum(rv.dist.b, 3))
print("Distribution : \n", distribution)
   
plot = plt.plot(distribution, rv.pdf(distribution))

Output:

Distribution : 
 [0.         0.06122449 0.12244898 0.18367347 0.24489796 0.30612245
 0.36734694 0.42857143 0.48979592 0.55102041 0.6122449  0.67346939
 0.73469388 0.79591837 0.85714286 0.91836735 0.97959184 1.04081633
 1.10204082 1.16326531 1.2244898  1.28571429 1.34693878 1.40816327
 1.46938776 1.53061224 1.59183673 1.65306122 1.71428571 1.7755102
 1.83673469 1.89795918 1.95918367 2.02040816 2.08163265 2.14285714
 2.20408163 2.26530612 2.32653061 2.3877551  2.44897959 2.51020408
 2.57142857 2.63265306 2.69387755 2.75510204 2.81632653 2.87755102
 2.93877551 3.        ]

Code #4 : Varying Positional Arguments




import matplotlib.pyplot as plt
import numpy as np
   
x = np.linspace(0, 5, 100)
   
# Varying positional arguments
y1 = hypsecant .pdf(x, 1, 3)
y2 = hypsecant .pdf(x, 1, 4)
plt.plot(x, y1, "*", x, y2, "r--")

Output:

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course




My Personal Notes arrow_drop_up
Recommended Articles
Page :