# scipy stats.hypsecant() | Python

scipy.stats.hypsecant() is an hyperbolic secant continuous random variable. to complete its specificaitons it is defined with a standard format and some shape parameters. The probability density is defined in the “standardized” form.

Parameters :

```-> α : scale
-> β : shape
-> μ : location
```
Code #1 : Creating Hyperbolic secant continuous random variable

 `from` `scipy.stats ``import` `hypsecant   ` `  `  `numargs ``=` `hypsecant.numargs ` `[] ``=` `[``0.7``, ``0.4``] ``*` `numargs ` `rv ``=` `hypsecant () ` `  `  `print` `(``"RV : \n"``, rv)  `

Output:

```RV :
scipy.stats._distn_infrastructure.rv_frozen object at 0x0000021FB588A160
```

Code #2 : Hyperbolic secant continuous variates and probability distribution

 `import` `numpy as np ` `quantile ``=` `np.arange (``0.01``, ``1``, ``0.1``) ` `   `  `# Random Variates ` `R ``=` `hypsecant .rvs(scale ``=` `2``,  size ``=` `10``) ` `print` `(``"Random Variates : \n"``, R) ` `  `  `# PDF ` `R ``=` `hypsecant .pdf(quantile, loc ``=` `0``, scale ``=` `1``) ` `print` `(``"\nProbability Distribution : \n"``, R) `

Output:

```Random Variates :
[ 0.50120826  0.60225476 -0.38307417  7.15799321 -1.1929279  -2.03152053
-0.07410646  1.79859597 -3.14724818  2.03731139]

Probability Distribution :
[0.31829397 0.31639377 0.31141785 0.30360449 0.2933099  0.28097073
0.26706289 0.25206321 0.23641852 0.22052427]
```

Code #3 : Graphical Representation.

 `import` `numpy as np ` `import` `matplotlib.pyplot as plt ` `  `  `distribution ``=` `np.linspace(``0``, np.minimum(rv.dist.b, ``3``)) ` `print``(``"Distribution : \n"``, distribution) ` `  `  `plot ``=` `plt.plot(distribution, rv.pdf(distribution)) `

Output:

```Distribution :
[0.         0.06122449 0.12244898 0.18367347 0.24489796 0.30612245
0.36734694 0.42857143 0.48979592 0.55102041 0.6122449  0.67346939
0.73469388 0.79591837 0.85714286 0.91836735 0.97959184 1.04081633
1.10204082 1.16326531 1.2244898  1.28571429 1.34693878 1.40816327
1.46938776 1.53061224 1.59183673 1.65306122 1.71428571 1.7755102
1.83673469 1.89795918 1.95918367 2.02040816 2.08163265 2.14285714
2.20408163 2.26530612 2.32653061 2.3877551  2.44897959 2.51020408
2.57142857 2.63265306 2.69387755 2.75510204 2.81632653 2.87755102
2.93877551 3.        ]
```

Code #4 : Varying Positional Arguments

 `import` `matplotlib.pyplot as plt ` `import` `numpy as np ` `  `  `x ``=` `np.linspace(``0``, ``5``, ``100``) ` `  `  `# Varying positional arguments ` `y1 ``=` `hypsecant .pdf(x, ``1``, ``3``) ` `y2 ``=` `hypsecant .pdf(x, ``1``, ``4``) ` `plt.plot(x, y1, ``"*"``, x, y2, ``"r--"``) `

Output:

My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.