Skip to content
Related Articles

Related Articles

scipy stats.halfgennorm() | Python
  • Last Updated : 07 Jun, 2019

scipy.stats.halfgennorm() is an upper half of a generalized normal continuous random variable. To complete its specificaitons, it is defined with a standard format and some shape parameters. The object object inherits from it a collection of generic methods and completes them with details specific.

Parameters :

-> α : scale
-> β : shape
-> μ : location
Code #1 : Creating Half-generalized normal continuous random variable

filter_none

edit
close

play_arrow

link
brightness_4
code

from scipy.stats import halfgennorm  
   
numargs = halfgennorm.numargs
[a] = [0.7, ] * numargs
rv = halfgennorm (a)
   
print ("RV : \n", rv) 

chevron_right


Output:

RV : 
 scipy.stats._distn_infrastructure.rv_frozen object at 0x0000021FB55D8DD8

Code #2 : Half-generalized random variates and probability distribution



filter_none

edit
close

play_arrow

link
brightness_4
code

import numpy as np
quantile = np.arange (0.01, 1, 0.1)
    
# Random Variates
R = halfgennorm .rvs(.2, scale = 2,  size = 10)
print ("Random Variates : \n", R)
   
# PDF
R = halfgennorm .pdf(quantile, .2, loc = 0, scale = 1)
print ("\nProbability Distribution : \n", R)

chevron_right


Output:

Random Variates : 
 [1.41299459e+03 3.51301175e+04 1.79981484e+05 2.90925518e+02
 2.70178121e+05 1.31706797e+05 3.25898913e+01 1.62607410e+04
 2.02263946e+04 1.97078668e+04]

Probability Distribution : 
 [0.00559658 0.0043805  0.00400834 0.0037776  0.00360957 0.00347731
 0.00336825 0.00327549 0.00319482 0.00312348]

Code #3 : Graphical Representation.

filter_none

edit
close

play_arrow

link
brightness_4
code

import numpy as np
import matplotlib.pyplot as plt
   
distribution = np.linspace(0, np.minimum(rv.dist.b, 3))
print("Distribution : \n", distribution)
   
plot = plt.plot(distribution, rv.pdf(distribution))

chevron_right


Output:

Distribution : 
 [0.         0.06122449 0.12244898 0.18367347 0.24489796 0.30612245
 0.36734694 0.42857143 0.48979592 0.55102041 0.6122449  0.67346939
 0.73469388 0.79591837 0.85714286 0.91836735 0.97959184 1.04081633
 1.10204082 1.16326531 1.2244898  1.28571429 1.34693878 1.40816327
 1.46938776 1.53061224 1.59183673 1.65306122 1.71428571 1.7755102
 1.83673469 1.89795918 1.95918367 2.02040816 2.08163265 2.14285714
 2.20408163 2.26530612 2.32653061 2.3877551  2.44897959 2.51020408
 2.57142857 2.63265306 2.69387755 2.75510204 2.81632653 2.87755102
 2.93877551 3.        ]

Code #4 : Varying Positional Arguments

filter_none

edit
close

play_arrow

link
brightness_4
code

import matplotlib.pyplot as plt
import numpy as np
   
x = np.linspace(0, 5, 100)
   
# Varying positional arguments
y1 = halfgennorm .pdf(x, 1, 3)
y2 = halfgennorm .pdf(x, 1, 4)
plt.plot(x, y1, "*", x, y2, "r--")

chevron_right


Output:

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :