Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App
geeksforgeeks
Browser
Continue

Related Articles

scipy stats.exponpow() | Python

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

scipy.stats.exponpow() is an exponential power continuous random variable that is defined with a standard format and some shape parameters to complete its specification.

Parameters :
q : lower and upper tail probability
x : quantiles
loc : [optional] location parameter. Default = 0
scale : [optional] scale parameter. Default = 1
size : [tuple of ints, optional] shape or random variates.
moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’).

Results : exponential power continuous random variable

Code #1 : Creating exponential power continuous random variable




from scipy.stats import exponpow   
  
numargs = exponpow  .numargs
[a] = [0.6, ] * numargs
rv = exponpow(a)
  
print ("RV : \n", rv) 

Output :

RV : 
 <scipy.stats._distn_infrastructure.rv_frozen object at 0x0000018D566864A8>

Code #2 : exponential power random variates and probability distribution.




import numpy as np
quantile = np.arange (0.01, 1, 0.1)
   
# Random Variates
R = exponpow.rvs(a, scale = 2,  size = 10)
print ("Random Variates : \n", R)
  
# PDF
R = exponpow.pdf(a, quantile, loc = 0, scale = 1)
print ("\nProbability Distribution : \n", R)

Output :

Random Variates : 
 [0.39218526 0.4418613  0.23005955 3.56399807 0.29120501 0.27121159
 0.07933858 2.54235979 3.05448398 0.6408786 ]

Probability Distribution : 
 [0.00815589 0.09245642 0.18010922 0.26897814 0.35721501 0.44327698
 0.52592189 0.60418893 0.67737085 0.74498201]
 

Code #3 : Graphical Representation.




import numpy as np
import matplotlib.pyplot as plt
  
distribution = np.linspace(0, np.minimum(rv.dist.b, 3))
print("Distribution : \n", distribution)
  
plot = plt.plot(distribution, rv.pdf(distribution))

Output :

Distribution : 
 [0.         0.06122449 0.12244898 0.18367347 0.24489796 0.30612245
 0.36734694 0.42857143 0.48979592 0.55102041 0.6122449  0.67346939
 0.73469388 0.79591837 0.85714286 0.91836735 0.97959184 1.04081633
 1.10204082 1.16326531 1.2244898  1.28571429 1.34693878 1.40816327
 1.46938776 1.53061224 1.59183673 1.65306122 1.71428571 1.7755102
 1.83673469 1.89795918 1.95918367 2.02040816 2.08163265 2.14285714
 2.20408163 2.26530612 2.32653061 2.3877551  2.44897959 2.51020408
 2.57142857 2.63265306 2.69387755 2.75510204 2.81632653 2.87755102
 2.93877551 3.        ]

Code #4 : Varying Positional Arguments




import matplotlib.pyplot as plt
import numpy as np
  
x = np.linspace(0, 5, 100)
  
# Varying positional arguments
y1 = exponpow  .pdf(x, 2, 6)
y2 = exponpow  .pdf(x, 1, 4)
plt.plot(x, y1, "*", x, y2, "r--")

Output :


My Personal Notes arrow_drop_up
Last Updated : 20 Mar, 2019
Like Article
Save Article
Similar Reads
Related Tutorials