scipy stats.exponpow() | Python

• Last Updated : 20 Mar, 2019

scipy.stats.exponpow() is an exponential power continuous random variable that is defined with a standard format and some shape parameters to complete its specification.

Parameters :
q : lower and upper tail probability
x : quantiles
loc : [optional] location parameter. Default = 0
scale : [optional] scale parameter. Default = 1
size : [tuple of ints, optional] shape or random variates.
moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’).

Results : exponential power continuous random variable

Code #1 : Creating exponential power continuous random variable

 `from` `scipy.stats ``import` `exponpow   `` ` `numargs ``=` `exponpow  .numargs``[a] ``=` `[``0.6``, ] ``*` `numargs``rv ``=` `exponpow(a)`` ` `print` `(``"RV : \n"``, rv) `

Output :

```RV :
<scipy.stats._distn_infrastructure.rv_frozen object at 0x0000018D566864A8>
```

Code #2 : exponential power random variates and probability distribution.

 `import` `numpy as np``quantile ``=` `np.arange (``0.01``, ``1``, ``0.1``)``  ` `# Random Variates``R ``=` `exponpow.rvs(a, scale ``=` `2``,  size ``=` `10``)``print` `(``"Random Variates : \n"``, R)`` ` `# PDF``R ``=` `exponpow.pdf(a, quantile, loc ``=` `0``, scale ``=` `1``)``print` `(``"\nProbability Distribution : \n"``, R)`

Output :

```Random Variates :
[0.39218526 0.4418613  0.23005955 3.56399807 0.29120501 0.27121159
0.07933858 2.54235979 3.05448398 0.6408786 ]

Probability Distribution :
[0.00815589 0.09245642 0.18010922 0.26897814 0.35721501 0.44327698
0.52592189 0.60418893 0.67737085 0.74498201]
```

Code #3 : Graphical Representation.

 `import` `numpy as np``import` `matplotlib.pyplot as plt`` ` `distribution ``=` `np.linspace(``0``, np.minimum(rv.dist.b, ``3``))``print``(``"Distribution : \n"``, distribution)`` ` `plot ``=` `plt.plot(distribution, rv.pdf(distribution))`

Output :

```Distribution :
[0.         0.06122449 0.12244898 0.18367347 0.24489796 0.30612245
0.36734694 0.42857143 0.48979592 0.55102041 0.6122449  0.67346939
0.73469388 0.79591837 0.85714286 0.91836735 0.97959184 1.04081633
1.10204082 1.16326531 1.2244898  1.28571429 1.34693878 1.40816327
1.46938776 1.53061224 1.59183673 1.65306122 1.71428571 1.7755102
1.83673469 1.89795918 1.95918367 2.02040816 2.08163265 2.14285714
2.20408163 2.26530612 2.32653061 2.3877551  2.44897959 2.51020408
2.57142857 2.63265306 2.69387755 2.75510204 2.81632653 2.87755102
2.93877551 3.        ]```

Code #4 : Varying Positional Arguments

 `import` `matplotlib.pyplot as plt``import` `numpy as np`` ` `x ``=` `np.linspace(``0``, ``5``, ``100``)`` ` `# Varying positional arguments``y1 ``=` `exponpow  .pdf(x, ``2``, ``6``)``y2 ``=` `exponpow  .pdf(x, ``1``, ``4``)``plt.plot(x, y1, ``"*"``, x, y2, ``"r--"``)`

Output :

My Personal Notes arrow_drop_up