Open In App
Related Articles

sciPy stats.describe() function | Python

Improve
Improve
Improve
Like Article
Like
Save Article
Save
Report issue
Report
scipy.stats.describe(array, axis=0) computes the descriptive statistics of the passed array elements along the specified axis of the array.
Parameters : array: Input array or object having the elements to calculate the statistics. axis: Axis along which the statistics is to be computed. By default axis = 0. Returns : Statistics of the array elements based on the set parameters.
Code #1:
# FInding statistics of data
  
from scipy import stats
  
arr1 = [9, 3, 27
   
desc = stats.describe(arr1)
  
print("No. of observations is :\n", desc) 

                    
Output:
No. of observations is : DescribeResult(nobs=3, minmax=(3, 27), mean=13.0, variance=156.0, skewness=0.5280049792181878, kurtosis=-1.5)
  Code #2: With multi-dimensional data
# FInding statistics of data
  
from scipy import stats
  
arr1 = [[1, 3, 27], 
        [3, 4, 6], 
        [7, 6, 3], 
        [3, 6, 8]] 
   
desc = stats.describe(arr1, axis = 0)
  
  
print("No. of observations at axis = 0 :\n\n", desc)
  
  
print("\n\nNo. of observations at axis = 1 :\n\n", desc)

                    
Output:
No. of observations at axis = 0 : DescribeResult(nobs=4, minmax=(array([1, 3, 3]), array([ 7, 6, 27])), mean=array([ 3.5 , 4.75, 11. ]), variance=array([ 6.33333333, 2.25 , 118. ]), skewness=array([ 0.65202366, -0.21383343, 1.03055786]), kurtosis=array([-0.90304709, -1.72016461, -0.75485971])) No. of observations at axis = 1 : DescribeResult(nobs=4, minmax=(array([1, 3, 3]), array([ 7, 6, 27])), mean=array([ 3.5 , 4.75, 11. ]), variance=array([ 6.33333333, 2.25 , 118. ]), skewness=array([ 0.65202366, -0.21383343, 1.03055786]), kurtosis=array([-0.90304709, -1.72016461, -0.75485971]))


Last Updated : 10 Feb, 2019
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads